Higgs boson measurements in the $H \rightarrow WW^* \rightarrow \ell \nu \ell \nu$ channel with ATLAS

Experimental Particle Physics Seminar University of Pennsylvania

Joana Machado Miguéns

FCUL, LIP - Lisbon

September 16th 2014

Outline

I will present the measurements of the Higgs boson in the $H \rightarrow WW^* \rightarrow \ell \nu \ell \nu$ decay, using all *pp* data collected by ATLAS during the first run of the LHC

- Physics motivation
- ATLAS experiment
- $H \to WW^* \to \ell \nu \ell \nu$
- Backgrounds
- Measuring Higgs production
- Higgs boson couplings
- Prospects

Phys. Lett. B 726 (2013), pp. 88-119; ATLAS-CONF-2013-030; ATLAS-CONF-2014-009

Joana Machado Miguéns (FCUL, LIP - Lisbon)

Physics Motivation

Standard Model Higgs boson

- Standard Model: unified description of fundamental particles and forces
- $\bullet\,$ Based on local gauge invariance of the SU(3) \times SU(2) \times U(1) group
- Remarkable agreement between theory and experiment!
- But mass terms for gauge bosons are forbidden...
- Unless symmetry is spontaneously broken: Higgs mechanism
- Gain spin-0 scalar massive particle: the Higgs boson
- Higgs boson observed by ATLAS and CMS at the LHC with $m_H \sim 125$ GeV
- Prof. Peter Higgs and Prof. François Englert awarded the Nobel Prize in 2014

Joana Machado Miguéns (FCUL, LIP - Lisbon)

Higgs boson decays

Analysis strategy needs to take into account Higgs branching ratios, final state signatures, production x-sections and background processes

Bosonic modes (discovery)

- $H \rightarrow WW^* \rightarrow \ell \nu \ell \nu$ more ahead!
- $H \rightarrow ZZ^* \rightarrow \ell\ell\ell\ell$ low BR but very high S/B good mass resolution
- $H \rightarrow \gamma \gamma$ very low BR good mass resolution

Fermionic decays

- $H \rightarrow b\bar{b}$ needs VH
- $H \rightarrow au au$ needs VBF

Why $H \rightarrow WW^* \rightarrow \ell \nu \ell \nu$?

- Observing $H \rightarrow WW^*$ decay is fundamental test of the theory
- Sizable $W \rightarrow e\nu/\mu\nu$ decays provide clean signature: probe ggF and VBF
- Two neutrinos in the final state: no mass sensitivity
- But second highest BR for $m_H = 125$ GeV: high event rate
- $H \rightarrow WW^* \rightarrow \ell \nu \ell \nu$ provides powerful measurements of production rates
- Important constraints to fermion and vector boson couplings
- Can also probe spin and parity properties (but I won't address that...)

The ATLAS Experiment

LHC: Large Hadron Collider

Overall view of the LHC experiments.

Joana Machado Miguéns (FCUL, LIP - Lisbon)

ATLAS: A Toroidal LHC ApparatuS

Joana Machado Miguéns (FCUL, LIP - Lisbon)

 $H \rightarrow VVVV^{+} \rightarrow \ell \nu \ell \nu$ with ATLAS

University of Pennsylvania - 16.09.2014 10 / 42

Identifying different objects

Joana Machado Miguéns (FCUL, LIP - Lisbon)

Recording pp collision data

Joana Machado Miguéns (FCUL, LIP - Lisbon)

 $H \rightarrow WW^* \rightarrow \ell \nu \ell \nu$ with ATLA

The $H \rightarrow WW^* \rightarrow \ell \nu \ell \nu$ analysis

$H \rightarrow WW^* \rightarrow \ell \nu \ell \nu \text{ signature}$

• 2 opposite-charge leptons + missing transverse energy final state

- No mass peak, signal manifests as broad excess in transverse mass $m_{\rm T}$
- Accurate and precise estimation of different background sources is essential!

Joana Machado Miguéns (FCUL, LIP - Lisbon)

 $H \rightarrow WW^* \rightarrow \ell \nu \ell \nu$ with ATLAS

All these are sources of background Standard Model Total Production Cross Section Measurements

Status: July 2014

Joana Machado Miguéns (FCUL, LIP - Lisbon)

University of Pennsylvania - 16.09.2014

15 / 42

Missing transverse energy

- Select events with missing transverse energy: $E_{\rm T}^{\rm miss} = -\sum p_{\rm T}$
- Relative- E_T^{miss} : better measurement in events with mismeasured leptons/jets

Event categories

• Event categories with different background compositions: better sensitivity!

- Lepton flavor split:
 - $ee + \mu\mu$ suffers from large Z/γ^* contamination, $e\mu$ has better sensitivity
- N_{jets} split (anti-k_t 0.4, $p_{\text{T}} > 25$ (30) GeV):
 - ▶ use $N_{\text{jets}} \leq 1$ and $N_{\text{jets}} \geq 2$ to probe ggF and VBF production modes

Joana Machado Miguéns (FCUL, LIP - Lisbon)

The VBF topology

- Two forward widely separated jets:
 - ► $|\Delta y_{jj}| > 2.8$
 - ▶ m_{jj} > 500 GeV
 - no b-jets to suppress top
- Central Higgs boson:
 - No other jets in the gap
 - Require leptons in the gap

Selecting Higgs candidates

- Exploit spin-0 of SM Higgs and V-A weak decay of W bosons
- Low invariant mass of dilepton system: $m_{\ell\ell} < 50~{
 m GeV}$
- ullet Small azimuthal separation between two leptons: $\Delta\phi_{\ell\ell} < 1.8$ rad

Backgrounds

All these are sources of background

Standard Model Total Production Cross Section Measurements Status: July 2014

W+jets

- Mimics signal when jet fakes lepton
- Essential to have good lepton identification and isolation
- Very hard to model fakes with MC
- Estimated entirely from data
- Validated with same charge dilepton
- $\sim 30\%$ uncertainty

Fake factor method

Oetermine fake factor from high statistics dijet data:

 $f_{\sf fake}(p_{\sf T},\eta) = N_{\sf id}/N_{\sf anti-\sf id}$

Solution Extract W + jets contamination in signal region:

 $N_{\rm id+id}^{W+\rm jets} = f_{\rm fake} \times N_{\rm id+anti-id}^{W+\rm jets}$

 $W\gamma$, $W\gamma^*$, WZ taken from MC and validated with same charge sample ($\sim 20\%$ unc.)

Drell-Yan in 0- and 1-jet same flavour channels

- Large $Z/\gamma^* \to ee/\mu\mu$ contamination in $ee+\mu\mu$ channels
- Pile-up degrades $E_{\rm T}^{\rm miss}$ resolution: more fake $E_{\rm T}^{\rm miss}$
- Z/γ^* contamination in 2012 increased by \sim 5 w.r.t. 2011

Apply tight selections on both calorimeter- and track-based measurements:
 E^{miss}_{T,rel} > 45 GeV and p^{miss}_{T,rel} > 45 GeV

24 / 42

Soft hadronic recoil to further suppress Drell-Yan

- Remember: looking at events with low $m_{\ell\ell}$, small $\Delta\phi_{\ell\ell}$ and no jets
- Z/γ^* events have two close-by leptons and no neutrinos (fake $E_{\rm T}^{\rm miss}$)
- $\bullet \ \ell\ell$ must be balanced by very soft jets not passing veto threshold
- Define f_{recoil} to measure soft hadronic activity opposite to $\ell\ell$ -axis
- Clear separation between Z/γ^* and processes with true $E_{\rm T}^{\rm miss}$ including signal
- Apply tight f_{recoil} selection: $f_{\text{recoil}} < 0.05 (0.2)$ for 0-jet (1-jet)

•
$$\epsilon^{Z/\gamma^*} \sim 25\%$$
 and $\epsilon^{\mathsf{non-}Z/\gamma^*} \sim 75\%$

Joana Machado Miguéns (FCUL, LIP - Lisbon)

Data-driven method to estimate Drell-Yan

- Challenging environment for $ee + \mu\mu$:
 - $E_{\rm T}^{\rm miss}$ is complex object
 - Fake $E_{\rm T}^{\rm miss}$ very hard to model
 - Soft jets: non-perturbative QCD
 - Pile-up just complicates more
- Estimate Z/γ^* from data: Pacman
- Z/γ^* suppressed to reasonable level
- 60% (80%) uncertainty on 0-jet (1-jet)

Pacman method

- **()** Measure efficiencies of f_{recoil} selection in data: ϵ^{Z/γ^*} and $\epsilon^{\text{non-}Z/\gamma^*}$
- Use data passing and failing f_{recoil} cut directly in the signal region
 measuring efficiencies so still insensitive to the presence of signal!
- **③** Invert matrix and solve for $N_{\text{pass}}^{Z/\gamma^*}$ to obtain Z/γ^* estimate in the SR

$$\begin{bmatrix} \mathsf{N}_{\mathsf{pass}}^{\mathsf{data}} \\ \mathsf{N}_{\mathsf{pass}+\mathsf{fail}}^{\mathsf{data}} \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1/\epsilon^{Z/\gamma^*} & 1/\epsilon^{\mathsf{non-}Z/\gamma^*} \end{bmatrix} \begin{bmatrix} \mathsf{N}_{\mathsf{pass}}^{Z/\gamma^*} \\ \mathsf{N}_{\mathsf{pass}}^{\mathsf{non-}Z/\gamma^*} \end{bmatrix}$$

Top backgrounds in 1- and 2-jet channels

- Top-quark backgrounds produce WW + b-jets
- Suppress $t\bar{t}$ and single top by vetoing on *b*-jets
- Use events with 1 *b*-jet as control regions
- Used to normalize top background directly to data
- For 2-jet apply VBF topology selections

Continuum WW for 0- and 1-jet channels

- WW control region at high $m_{\ell\ell}$
- Normalize WW to data in CR

$$\begin{split} \mathsf{NF}^{WW}_{0jet} &= 1.16 \pm 0.04 \text{ (stat.)} \\ \mathsf{NF}^{WW}_{1jet} &= 1.03 \pm 0.06 \text{ (stat.)} \end{split}$$

- WW is main background
- Uncertainties from MC on CR-to-SR extrapolation α
- Important to keep them small
- Reduce by choosing CR close to SR
- \sim 2% uncertainty on α
- $\bullet~\sim7\%$ total uncertainty for 0-jet

Measuring the Higgs Production

Not the full mass, but still something

- *m*_T fitted to extract Higgs
- Excess in data consistent with SM Higgs

 Further sensitivity by splitting *e*μ events in *m*_{ℓℓ}

	$N_{\rm jet} = 0$	$N_{\rm jet} = 1$	$N_{\rm jet} \ge 2$
Observed	831	309	55
Signal	100 ± 21	41 ± 14	10.9 ± 1.4
Total background	739 ± 39	261 ± 28	36 ± 4
WW	551 ± 41	108 ± 40	4.1 ± 1.5
Other VV	58 ± 8	27 ± 6	1.9 ± 0.4
Top-quark	39 ± 5	95 ± 28	5.4 ± 2.1
Z+jets	30 ± 10	12 ± 6	22 ± 3
W+jets	61 ± 21	20 ± 5	0.7 ± 0.2

Note: yields quoted in m_T window

30 / 42

Significance of the excess

- Probability for background-only to produce observed excess at 125.5 GeV
 8 × 10⁻⁵
- Significance of the observed excess at 125.5 GeV:
 - ► 3.8*σ*
- Evidence of Higgs boson in $H \to WW^*$ decay

Joana Machado Miguéns (FCUL, LIP - Lisbon)

31 / 42

Measuring the total production rate

• Signal strength compares observed rate to SM-predicted rate

$$\mu_{\rm obs} = \frac{(\sigma \times {\rm BR})_{\rm obs}}{\sigma_{\rm SM} \times {\rm BR}_{\rm SM}}$$

- 30% precision on $\mu!$
- Excess compatible with 125.5 GeV Higgs

 $\mu_{\rm obs} = 1.00 \pm 0.21$ (stat.) $^{+0.16}_{-0.08}$ (theo.) $^{+0.18}_{-0.17}$ (expt.) $= 1.00^{+0.32}_{-0.29}$

Breakdown of uncertainties on μ

Category	Source	Uncertainty, up (%)	Uncertainty, down (%)
Statistical	Observed data	+21	-21
Theoretical	Signal yield $(\sigma \cdot \mathcal{B})$	+12	-9
Theoretical	WW normalisation	+12	-12
Experimental	Objects and DY estimation	+9	-8
Theoretical	Signal acceptance	+9	-7
Experimental	MC statistics	+7	-7
Experimental	W+ jets fake factor	+5	-5
Theoretical	Backgrounds, excluding WW	+5	-4
Luminosity	Integrated luminosity	+4	-4
Total		+32	-29

• Uncertainties impacting μ : half statistics, half systematics

- Half the systematics are from theory
- Dominant experimental systematics from jet energy scale, *b*-tagging and data-driven background estimates

Measuring VBF

- Use 2-jet category to measure VBF
- ggF considered background

• 2.5σ excess observed in data

•
$$\mu_{\sf VBF}^{\sf obs} = 1.66 \pm 0.79$$

ggF vs. VBF

- 2D contour of $\mu_{\rm ggF+ttH}$ vs. $\mu_{\rm VBF+VH}$
- All channels compatible with SM
- Take ratio for combination
- 4.1 σ evidence that a fraction of Higgs production occurs through VBF

Higgs Boson Couplings
Translating rates into SM Higgs couplings

Why?

• Higgs couplings are exactly determined in the SM:

$$g_{HVV}=2m_V^2/{
m vev}$$
 $g_{
m Yukawa}=m_f/{
m vev}$

- Essential to measure them as precisely as possible
- Any deviations will be a sign of new physics

How?

- Scaling factors $\kappa,$ such that $\sigma\sim\kappa^2$ and $\Gamma\sim\kappa^2,$ with $\kappa=1$ for SM
- $\bullet\,$ Take common fermion and vector boson scaling factors: κ_{F} and κ_{V}

heavy quarks in ggF loop: $\sigma_{ggF} \sim \kappa_F^2 \rightarrow H \rightarrow WW$ decay: $\Gamma_{WW} \sim \kappa_V^2$ vector bosons in VBF: $\sigma_{VBF} \sim \kappa_V^2 \rightarrow Higgs$ total width: $\Gamma_H \sim 0.25\kappa_V^2 + 0.75\kappa_F^2$

Result

•
$$\sigma(gg \to H) \times BR(H \to WW) = \sigma_{ggF} \frac{\Gamma_{WW}}{\Gamma_H} \sim \frac{\kappa_F^2 \kappa_V^2}{0.25 \kappa_V^2 + 0.75 \kappa_E^2}$$

• $\sigma(qq \rightarrow qqH) \times BR(H \rightarrow WW) = \sigma_{VBF} \frac{\Gamma_{WW}}{\Gamma_H} \sim \frac{\kappa_V^2 \kappa_V^2}{0.25 \kappa_V^2 + 0.75 \kappa_F^2}$

Fermion vs. vector boson couplings

- Assuming only SM contributions to the Higgs total width
- Relative sign between κ_F and κ_V probed only in $H \rightarrow \gamma \gamma$ loop
- Combination of all channels favors SM-like positive sign

$$\kappa_V = 1.15 \pm 0.08$$
 $\kappa_F = 0.99^{+0.17}_{-0.15}$

What's next?

Prospects for the future

- Remarkable agreement between SM and data but...
 - dark matter and dark energy?
 - SM does not explain everything
- Found the Higgs but...
 - Low mass is unnatural, hierarchy problem arises
 - Loop corrections to scalar Higgs mass are divergent
 - With a cut-off Λ ~ 10¹⁹ GeV (Plank scale), a striking cancellation with the bare mass m₀ needs to occur!
 - Λ can be smaller, but then there should be new physics at the TeV scale

Prospects for the future

- Maybe it's SUSY?
 - Cures hierarchy problem & offers dark matter candidate

Η

- So far no signs of it at the LHC
- But the phase space to cover is large

fermion and boson contributions to m_{H}^{2} have opposite signs and cancel out

- More data and energy for Run-II!
 - Look directly for new physics
 - Or look for deviations to the SM
 - Last energy boost we'll get in a while: the time is now! ►

Summary and conclusions

- Very rich Higgs physics program for Run-I of the LHC!
- $H \rightarrow WW^* \rightarrow \ell \nu \ell \nu$ provides powerful measurements of Higgs production and couplings
- New and improved $H \to WW^* \to \ell \nu \ell \nu$ results will be out soon
- And Run-II is about to begin, bringing a lot more energy and data, and hopefully some new physics?

Prof. Peter Higgs (as confirmed by the name tag!) cornered when coming out of the bathroom at the EPS-HEP conference in Stockholm

Joana Machado Miguéns (FCUL, LIP - Lisbon)

 $H \rightarrow WW^* \rightarrow \ell \nu \ell \nu$ with ATLA

Back-up slides

MC simulation

Signal MC generator	($\tau \cdot \mathcal{B} (pb)$	Bacl	kground	MC generator		$\sigma\cdot\mathcal{B}\left(\mathrm{pb} ight)$
ggF Powheg [30]+F VBF Powheg+Pythi VH Pythia8	Рутніа8 [31] а8	0.44 0.035 0.13	qq, g qq, g gg – tī	$\begin{array}{l} qq \rightarrow WW \\ qq \rightarrow WW + 2j \\ \rightarrow WW \end{array}$	Powheg+Pythia6 Sherpa [33] with a GG2WW 3.1.2 [3 MC@NLO [37]+	[32] no $O(\alpha_s)$ terms 4,35]+Herwig [3 Herwig	5.7 0.039 6] 0.16 240
			Sing	gle top: tW, tb	MC@NLO+Herv	VIG	28
			Single top: <i>tqb</i>		AcerMC [38]+Py	тніаб	88
			$\frac{Z}{\gamma}$, inclusive $\mathcal{L}_{\mathcal{L}}$	ALPGEN+HERWIG	up to $O(\alpha)$	16000
			Z ^(*) 2	$\overline{Z^{(*)}} \rightarrow 4\ell$	Powheg+Pythia8	up to $O(a_s)$	0.73
			WZ/	$W\gamma^*, m_{Z/\gamma^*} > 7$	Powheg+Pythia8		0.83
			$W\gamma^*$	$m_{\gamma^*} \leq 7$	MadGraph [39-4]	l]+Рутніаб	11
			Wγ		Alpgen+Herwig		370
Production	Symbol	Mechani	sm	Cross-se	ection [pb]	Theory Unce	rtainties [%]
	-			$\sqrt{s} = 8$ (7) TeV	$V, m_H = 125 \text{ GeV}$	QCD scale	$\mathrm{PDFs} + \alpha_s$
Gluon fusion	ggF	$gg \rightarrow l$	H	19.27	(15.13)	$^{+7.2}_{-7.8}~(^{+7.1}_{-7.8})$	$^{+7.5}_{-6.9} \left(^{+7.6}_{-7.1} \right)$
Vector boson fusion	VBF	$qq \rightarrow qq$	H	1.58	(1.22)	$\pm 0.2~(\pm 0.3)$	$^{+2.6}_{-2.8} \left(^{+2.5}_{-2.1} \right)$
Higgs strolung	WH	$qq \rightarrow W$	H	0.70	(0.58)	$\pm 1.0 \ (\pm 0.9)$	$\pm 2.3 \ (\pm 2.6)$
ringgs-stratung	\mathbf{ZH}	$qq/gg \rightarrow$	ZH	0.42	(0.34)	$\pm 3.1~(\pm 2.9)$	$\pm 2.4 \ (\pm 2.7)$
Associated w/ top	ttH	$gg \to t\bar{t}$	Η	0.13	(0.09)	$^{+3.8}_{-9.3} \left(^{+3.2}_{-9.3} \right)$	$\pm 8.1 \ (\pm 8.4)$

44 / 42

$H \rightarrow WW^* \rightarrow \ell \nu \ell \nu$ event selection

Category	$N_{\rm jet} = 0$	$N_{\rm jet} = 1$	$N_{\text{jet}} \ge 2$
Pre-selection	Two is Lepton $e\mu + \mu$ $ee + \mu_j$	solated leptons ($\ell = e, \mu$) wi ns with $p_{\rm T}^{\rm lead} > 25$ and $p_{\rm T}^{\rm suble}$ $e: m_{\ell\ell} > 10$ $u: m_{\ell\ell} > 12, m_{\ell\ell} - m_Z > 1$	th opposite charge ^{ad} > 15 5
Missing transverse momentum and hadronic recoil	$\begin{array}{l} e\mu + \mu e: \ E_{\mathrm{T,rel}}^{\mathrm{miss}} > 25\\ ee + \mu \mu: \ E_{\mathrm{T,rel}}^{\mathrm{miss}} > 45\\ ee + \mu \mu: \ p_{\mathrm{T,rel}}^{\mathrm{miss}} > 45\\ ee + \mu \mu: \ f_{\mathrm{recoil}} < 0.05 \end{array}$	$\begin{array}{l} e\mu + \mu e: \ E_{\mathrm{T,rel}}^{\mathrm{miss}} > 25\\ ee + \mu \mu: \ E_{\mathrm{T,rel}}^{\mathrm{miss}} > 45\\ ee + \mu \mu: \ p_{\mathrm{T,rel}}^{\mathrm{miss}} > 45\\ ee + \mu \mu: \ f_{\mathrm{recoil}} < 0.2 \end{array}$	$e\mu + \mu e: E_{\rm T}^{\rm miss} > 20$ $ee + \mu\mu: E_{\rm T}^{\rm miss} > 45$ $ee + \mu\mu: E_{\rm T,STVF}^{\rm miss} > 35$
General selection	$ \Delta \phi_{\ell\ell,MET} > \pi/2$ $p_{\rm T}^{\ell\ell} > 30$	$N_{b\text{-jet}} = 0$ - $e\mu + \mu e: Z/\gamma^* \rightarrow \tau \tau \text{ veto}$	$N_{b\text{-jet}} = 0$ $p_{T}^{\text{tot}} < 45$ $e\mu + \mu e: Z/\gamma^* \to \tau\tau \text{ veto}$
VBF topology		- - -	$m_{jj} > 500$ $ \Delta y_{jj} > 2.8$ No jets ($p_T > 20$) in rapidity gap Require both ℓ in rapidity gap
$H \to WW^{(*)} \to \ell \nu \ell \nu$ topology	$m_{\ell\ell} < 50$ $ \Delta\phi_{\ell\ell} < 1.8$ $e\mu + \mu e: \text{ split } m_{\ell\ell}$ Fit m_{T}	$\begin{split} m_{\ell\ell} &< 50 \\ \Delta\phi_{\ell\ell} < 1.8 \\ e\mu + \mu e: \text{ split } m_{\ell\ell} \\ \text{Fit } m_{\mathrm{T}} \end{split}$	$m_{\ell\ell} < 60$ $ \Delta\phi_{\ell\ell} < 1.8$ - Fit $m_{\rm T}$

Jets, jet vertex fraction and pile-up

- Fraction of $Z \rightarrow \mu\mu + 1$ jet to all $Z \rightarrow \mu\mu$ candidates versus number of primary vertices, before and after JVF requirement
- Jet vertex fraction (JVF) defined at $\sum p_{\rm T}$ of associated tracks that can be matched to the primary vertex
- In $H \rightarrow WW^* \rightarrow \ell \nu \ell \nu$ we require |JVF| > 0.5 for jets with $p_T < 50$ GeV

$E_{\mathsf{T},\mathsf{STVF}}^{\mathsf{miss}}$ for $ee + \mu\mu$ VBF

$$E_{x(y)}^{\text{miss,calo}} = E_{x(y)}^{\text{miss},e} + E_{x(y)}^{\text{miss},\gamma} + E_{x(y)}^{\text{miss},\tau} + E_{x(y)}^{\text{miss,jets}} + E_{x(y)}^{\text{miss,SoftTerm}} + E_{x(y)}^{\text{miss},\mu}$$

 For STVF the soft term is weighted by ∑ p_T of associated tracks that can be matched to the primary vertex

Schematics of backgrounds estimates

*0j: estimate top background from b-jet survival probability

Summary of backgrounds estimates

Table 3: Background treatment listing. The estimation procedures for various background processes are given in four categories: normalised using a control region (CR); data-derived estimate (Data); normalised using the MC (MC); and normalised using the MC, but validated in a control region (MC + VR). The " $(e\mu + \mu e)$ " terms denote that for the $ee + \mu\mu$ channel in the same N_{jet} mode, the $e\mu + \mu e$ region is used instead, for reasons of purity and/or statistics. The "(merged)" terms indicate that the fully combined $e\mu + \mu e + ee + \mu\mu$ control region is used for all channels.

Channel	WW	Тор	$Z/\gamma^* \rightarrow \tau \tau$	$Z/\gamma^* \rightarrow \ell \ell$	W+ jets	VV
$N_{\rm jet} = 0$						
$e\mu + \mu e$	CR	CR	CR	MC	Data	MC + VR
$ee + \mu\mu$	$\operatorname{CR}\left(e\mu+\mu e\right)$	$\operatorname{CR}\left(e\mu+\mu e\right)$	$\operatorname{CR}\left(e\mu+\mu e\right)$	Data	Data	MC + VR
$N_{\rm jet} = 1$						
eμ + μe	CR	CR	CR	MC	Data	MC + VR
$ee + \mu\mu$	$\operatorname{CR}\left(e\mu+\mu e\right)$	$\operatorname{CR}\left(e\mu+\mu e\right)$	$\operatorname{CR}\left(e\mu+\mu e\right)$	Data	Data	MC + VR
$N_{\text{jet}} \ge 2$						
$e\mu + \mu e$	MC	CR (merged)	CR	MC	Data	MC
$ee + \mu\mu$	MC	CR (merged)	$\operatorname{CR}\left(e\mu+\mu e\right)$	Data	Data	MC

• Generally use $e\mu$ CRs, with higher stats and higher purity

Cutflow in control regions

Estimate	Nobs	N _{bkg}	Nsig	N_{WW}	N_{VV}	$N_{t\bar{t}}$	Nt	N_{Z/γ^*}	N _{W+jets}
WW									
$N_{\text{iet}} = 0$	2224	1970 ± 17	31 ± 0.7	1383 ± 9.3	100 ± 6.8	152 ± 4.4	107 ± 4.3	68 ± 10	160 ± 3.6
$N_{jet} = 1$	1897	1893 ± 17	1.9 ± 0.3	752 ± 6.8	88 ± 5.5	717 ± 9.5	243 ± 6.7	37 ± 7.5	56 ± 2.5
$Z/\gamma^* \rightarrow \tau \tau$									
$N_{\text{iet}} = 0$	1935	2251 ± 31	2.5 ± 0.2	61 ± 1.9	8.5 ± 1.1	4.5 ± 0.8	2.7 ± 0.6	2113 ± 31	61 ± 3.8
$N_{iet} = 1$	2884	3226 ± 34	7.5 ± 0.3	117 ± 2.7	22 ± 3.1	570 ± 8.4	50 ± 3	2379 ± 32	88 ± 4.3
$N_{jet} \ge 2$	212	224 ± 7	0.6 ± 0.1	13 ± 1	4 ± 1	44 ± 3	5 ± 1	148 ± 6	9 ± 1
Тор									
$N_{\text{jet}} = 1$	4926	4781 ± 26	12 ± 0.5	184 ± 3.7	43 ± 9.5	3399 ± 20	1049 ± 13	72 ± 3.1	35 ± 2.2
$N_{jet} \ge 2$	126	201 ± 5	1.6 ± 0.1	6.4 ± 0.4	1.0 ± 0.3	157 ± 4	26 ± 2	9 ± 1	0.3 ± 0.4

Jet Veto Survival Probability for top in 0-jet

- $P^{1b-\text{tag}}$ is the jet veto survival probability $(N^{0j}/N^{\text{incl.}})$ in a sample with at least one *b*-tagged jet
- $\mathsf{NF}^{top}_{\mathsf{Oiet}} = 1.07 \pm 0.03$ (stat.), $\sim 13\%$ on estimated yield

WW control regions

- WW 0-jet CR: $50 < m_{\ell\ell} < 100 \; {
 m GeV}$
- WW 1-jet CR: $m_{\ell\ell} > 80 \text{ GeV}$

$\textit{WW}~\mathsf{CR}~\alpha$ extrapolation uncertainties

Channel	Range (GeV)	QCD scale (%)	PS, UE (%)	PDF (%)	Modelling (%)
$N_{\text{jet}} = 0$					
eμ + μe	$10 < m_{\ell\ell} < 30$	0.9	0.2	1.5	-1.2
$e\mu + \mu e$	$30 \le m_{\ell\ell} < 50$	0.9	0.8	1.1	-1.4
$ee + \mu\mu$	$12\!<\!m_{\ell\ell}\!<\!50$	1.0	0.3	1.1	1.7
$N_{\rm jet} = 1$					
$e\mu + \mu e$	$10 < m_{\ell\ell} < 30$	1.6	0.5	2.0	-5.1
$e\mu + \mu e$	$30 \le m_{\ell\ell} < 50$	1.5	0.5	1.8	-5.0
$ee + \mu\mu$	$12\!<\!m_{\ell\ell}\!<\!50$	1.4	0.6	1.7	-3.1

Same sign validation regions

- W+jets determined entirely from data
- $W\gamma$, WZ, $W\gamma^*$ and ZZ taken from simulation
- $W\gamma$ and $W\gamma^*$ normalized to NLO prediction of MCFM
- All processes validated with same sign dilepton events

$W\gamma$ validation region

• The simulation of the $W\gamma$ is validated with modified same-sign dilepton events, in which the electron selection criteria that remove photon conversions are reversed.

Uncertainties on background yields estimated from CRs

Estimate	Stat. (%)	Theory (%)	Expt. (%)	Crosstalk (%)	Total (%)
WW					
$N_{\rm jet} = 0$	2.9	1.6	4.4	5.0	7.4
$N_{\rm jet} = 1$	6	5	4	36	37
Тор					
$N_{\rm jet} = 1$	2	8	22	16	29
$N_{\rm jet} \ge 2$	10	15	29	19	39

$$N_{bkg,est}^{SR} = \underbrace{\frac{N_{data}^{CR} - N_{other}^{CR}}{N_{bkg,MC}^{CR}}}_{NF_{bkg}} \times N_{bkg,MC}^{SR} = (N_{data}^{CR} - N_{other}^{CR}) \times \underbrace{\frac{N_{bkg,MC}^{SR}}{N_{bkg,MC}^{CR}}}_{NF_{bkg}}$$

0-jet cutflow

Selection	$N_{\rm obs}$	N _{bkg}	Nsig	N_{WW}	N_{VV}	$N_{t\bar{t}}$	N_t	N_{Z/γ^*}	N _{W+ jets}
$N_{\text{jet}} = 0$	9024	9000 ± 40	172 ± 2	4900 ± 20	370 ± 10	510 ± 10	310 ± 10	2440 ± 30	470 ± 10
$ \Delta \phi_{\ell\ell,MET} > \frac{1}{2}$	8100	8120 ± 40	170 ± 2	4840 ± 20	360 ± 10	490 ± 10	310 ± 10	1690 ± 30	440 ± 10
$p_{\rm T}^{\ell\ell} > 30$	5497	5490 ± 30	156 ± 2	4050 ± 20	290 ± 10	450 ± 10	280 ± 10	100 ± 10	320 ± 5
$m_{\ell\ell} < 50$	1453	1310 ± 10	124 ± 1	960 ± 10	110 ± 6	69 ± 3	46 ± 3	18 ± 7	100 ± 2
$ \Delta\phi_{\ell\ell} <1.8$	1399	1240 ± 10	119 ± 1	930 ± 10	107 ± 6	67 ± 3	44 ± 3	13 ± 7	88 ± 2

(a) $e\mu + \mu e$ channel

(b) $ee + \mu\mu$ channel

Selection	$N_{\rm obs}$	N _{bkg}	$N_{\rm sig}$	N _{WW}	N_{VV}	$N_{t\bar{t}}$	Nt	N_{Z/γ^*}	N _{W+jets}
$N_{\text{jet}} = 0$	16446	15600 ± 200	104 ± 1	2440 ± 10	190 ± 5	280 ± 6	175 ± 6	12300 ± 160	170 ± 10
$ \Delta \phi_{\ell\ell,MET} > \frac{1}{2}$	5670	12970 ± 140 5650 + 70	103 ± 1 99 + 1	2430 ± 10 2300 ± 10	190 ± 5 170 ± 5	280 ± 6 260 ± 6	174 ± 6 167 ± 5	9740 ± 140 2610 ± 70	160 ± 10 134 ± 4
$m_{\ell\ell} < 50$	2314	2390 ± 20	84 ± 1	2500 ± 10 760 ± 10	64 ± 3	53 ± 3	42 ± 3	1410 ± 20	62 ± 3
$p_{T,rel}^{miss} > 45$	1032	993 ± 10	63 ± 1	650 ± 10	42 ± 2	47 ± 3	39 ± 3	200 ± 5	19 ± 2
$ \Delta\phi_{\ell\ell} <1.8$	1026	983 ± 10	63 ± 1	640 ± 10	41 ± 2	46 ± 3	39 ± 3	195 ± 5	18 ± 2
$f_{\rm recoil} < 0.05$	671	647 ± 7	42 ± 1	520 ± 10	30 ± 2	19 ± 2	22 ± 2	49 ± 3	12 ± 1

1-jet cutflow

Selection	$N_{\rm obs}$	N _{bkg}	N _{sig}	N_{WW}	N_{VV}	$N_{t\bar{t}}$	N _t	N_{Z/γ^*}	
$N_{\text{jet}} = 1$	9527	9460 ± 40	97 ± 1	1660 ± 10	270 ± 10	4980 ± 30	1600 ± 20	760 ± 20	
$N_{b-jet} = 0$	4320	4240 ± 30	85 ± 1	1460 ± 10	220 ± 10	1270 ± 10	460 ± 10	670 ± 10	
$Z \rightarrow \tau \tau$ veto	4138	4020 ± 30	84 ± 1	1420 ± 10	220 ± 10	1220 ± 10	440 ± 10	580 ± 10	
$m_{\ell\ell} < 50$	886	830 ± 10	63 ± 1	270 ± 4	69 ± 5	216 ± 6	80 ± 4	149 ± 5	
$ \Delta\phi_{\ell\ell} <1.8$	728	650 ± 10	59 ± 1	250 ± 4	60 ± 4	204 ± 6	76 ± 4	28 ± 3	

(a) $e\mu + \mu e$ channel

(b) $ee + \mu\mu$ channel

Selection	Nobs	N _{bkg}	Nsig	N _{WW}	N_{VV}	N _{tī}	N _t	$N_{{\rm Z}/\gamma^*}$	N _{W+ jets}
$N_{\text{jet}} = 1$ $N_{b-\text{iet}} = 0$	8354 5192	8120 ± 90 4800 ± 80	54 ± 1 48 ± 1	820 ± 10 720 ± 10	140 ± 10 120 ± 10	2740 ± 20 720 ± 10	890 ± 10 260 ± 10	3470 ± 80 2940 ± 70	60 ± 10 40 ± 10
$ \begin{array}{l} m_{\ell\ell} < 50 \\ p_{\mathrm{T,rel}}^{\mathrm{miss}} > 45 \\ \Delta \phi_{\ell\ell} < 1.8 \\ f_{\mathrm{recoil}} < 0.2 \end{array} $	1773 440 430 346	1540 ± 20 420 ± 10 410 ± 10 320 ± 10	38 ± 1 21 ± 1 20 ± 1 16 ± 1	195 ± 4 148 ± 3 143 ± 3 128 ± 3	35 ± 2 21 ± 1 20 ± 1 17 ± 1	166 ± 5 128 ± 5 125 ± 5 97 ± 4	65 ± 3 52 ± 3 51 ± 3 44 ± 3	$1060 \pm 10 \\ 64 \pm 4 \\ 63 \pm 4 \\ 25 \pm 2$	$20 \pm 2 \\ 5.1 \pm 0.8 \\ 4.5 \pm 0.7 \\ 3.1 \pm 0.6$

58 / 42

VBF cutflow

(a) $e\mu + \mu e$ channel

Selection	Nobs	N _{bkg}	Nsig, VBF	N _{sig,ggF}	N_{WW}	N_{VV}	N _{tī}	Nt	N_{Z/γ^*}	N _{W+jets}
$N_{\text{iet}} \ge 2$	48723	47740 ± 80	43 ± 1	67 ± 1	940 ± 10	300 ± 20	41800 ± 70	2370 ± 20	1800 ± 30	440 ± 10
$N_{b-iet} = 0$	5852	5690 ± 30	31 ± 1	49 ± 1	690 ± 10	200 ± 10	2930 ± 20	350 ± 10	1300 ± 20	171 ± 5
$p_T^{tot} < 45$	4790	4620 ± 30	27 ± 1	41 ± 1	590 ± 10	160 ± 10	2320 ± 20	290 ± 10	1100 ± 20	126 ± 4
$Z \rightarrow \tau \tau$ veto	4007	3840 ± 30	25 ± 1	38 ± 1	540 ± 10	140 ± 10	2150 ± 20	260 ± 10	600 ± 20	108 ± 4
$ \Delta y_{ii} > 2.8$	696	680 ± 10	12 ± 0.2	9.5 ± 0.3	100 ± 2	25 ± 3	380 ± 10	55 ± 3	95 ± 5	19 ± 2
$m_{ii} > 500$	198	170 ± 4	7.5 ± 0.1	2.9 ± 0.2	34 ± 1	5.6 ± 0.6	93 ± 3	11 ± 1	19 ± 2	4.4 ± 0.7
No jets in y ga	ip 92	77 ± 2	6.3 ± 0.1	1.7 ± 0.2	25 ± 1	2.8 ± 0.4	30 ± 2	5.2 ± 0.8	9 ± 1	3.1 ± 0.6
Both ℓ in y gap	5 78	59 ± 2	6.1 ± 0.1	1.6 ± 0.1	19 ± 1	2.1 ± 0.3	22 ± 1	4.3 ± 0.7	7 ± 1	2.4 ± 0.5
$m_{\ell\ell} < 60$	31	16 ± 1	5.5 ± 0.1	1.5 ± 0.1	3.8 ± 0.4	0.7 ± 0.2	4.5 ± 0.7	0.7 ± 0.3	4.4 ± 0.8	1.0 ± 0.4
$ \Delta\phi_{\ell\ell} {<}1.8$	23	12 ± 1	5.1 ± 0.1	1.3 ± 0.1	3.5 ± 0.4	0.6 ± 0.2	3.7 ± 0.7	0.7 ± 0.3	1.9 ± 0.5	0.6 ± 0.3

(b) $ee + \mu\mu$ channel

Selection	$N_{\rm obs}$	N _{bkg}	N _{sig,VBF}	N _{sig,ggF}	N_{WW}	N_{VV}	N _{tī}	Nt	N_{Z/γ^*}	N _{W+jets}
$N_{\text{iet}} \ge 2$	32877	32300 ± 100	26 ± 0.7	40 ± 1	540 ± 6	180 ± 10	24540 ± 60	1390 ± 20	5420 ± 90	190 ± 10
$\dot{N}_{h-\text{iet}} = 0$	65388	6370 ± 80	19 ± 0.6	30 ± 1	390 ± 5	130 ± 10	1750 ± 20	200 ± 10	3810 ± 80	58 ± 4
$p_{\rm T}^{\rm tot} < 45$	4903	4830 ± 70	17 ± 0.5	24 ± 1	340 ± 4	92 ± 5	1370 ± 10	170 ± 10	2790 ± 70	43 ± 3
$ \Delta y_{ii} > 2.8$	958	930 ± 30	8.1 ± 0.2	6.2 ± 0.3	61 ± 2	12 ± 1.3	252 ± 6	35 ± 2	560 ± 30	6 ± 1
$m_{ii} > 500$	298	245 ± 6	5.5 ± 0.1	2.1 ± 0.2	23 ± 1	4.1 ± 1.1	62 ± 3	9 ± 1	142 ± 5	1.4 ± 0.6
No jets in y g	ap 147	119 ± 4	4.7 ± 0.1	1.1 ± 0.1	17 ± 1	2.8 ± 1.1	19 ± 1	4.1 ± 0.7	74 ± 3	0.7 ± 0.4
Both ℓ in y ga	p 108	85 ± 3	4.5 ± 0.1	0.9 ± 0.1	12 ± 1	2.3 ± 1.1	14 ± 1	3.1 ± 0.6	51 ± 3	0.3 ± 0.3
$m_{\ell\ell} < 60$	52	40 ± 2	4.0 ± 0.1	0.8 ± 0.1	3.2 ± 0.3	1.6 ± 1.1	3.7 ± 0.6	0.8 ± 0.3	30 ± 2	0.1 ± 0.2
$ \Delta \phi_{\ell\ell} < 1.8$	42	34 ± 2	3.7 ± 0.1	0.7 ± 0.1	2.8 ± 0.3	1.6 ± 1.1	3.3 ± 0.5	0.7 ± 0.3	25 ± 2	0.1 ± 0.2

0-jet $e\mu$ kinematics

60 / 42

1-jet $e\mu$ kinematics

VBF jets

VBF kinematics

0-jet DF signal region

0-jet SF signal region

1-jet DF signal region

66 / 42

1-jet SF signal region

VBF signal region

Signal region $m_{\rm T}$ distributions

69 / 42

Systematic uncertainties on predicted signal and background yields

Source	$N_{\rm jet} = 0$	$N_{\rm jet} = 1$	$N_{\rm jet} \ge 2$
Theoretical uncertainties on total signal yield (%)			
QCD scale for ggF, $N_{\text{jet}} \ge 0$	+13	-	-
QCD scale for ggF, $N_{jet} \ge 1$	+10	-27	-
QCD scale for ggF, $N_{\text{jet}} \ge 2$	-	-15	+4
QCD scale for ggF, $N_{\text{jet}} \ge 3$	-	-	+4
Parton shower and underlying event	+3	-10	±5
QCD scale (acceptance)	+4	+4	±3
Experimental uncertainties on total signal yield (%)			
Jet energy scale and resolution	5	2	6
Uncertainties on total background yield (%)			
WW transfer factors (theory)	±1	±2	±4
Jet energy scale and resolution	2	3	7
<i>b</i> -tagging efficiency	-	+7	+2
$f_{\rm recoil}$ efficiency	±4	±2	-

Exclusion

Signal strength

The banana plot

SUSY after Run-I

ATLAS SUSY Searches* - 95% CL Lower Limits

Status: ICHEP 2014

	Model	e, μ, τ, γ	Jets	$E_{\rm T}^{\rm miss}$	∫£ dt[fb	b ⁻¹] Mass limit		Reference
Inclusive Searches	$ \begin{split} & MSUGRA/CMSSM \\ & MSUGRA/CMSSM \\ & MSUGRA/CMSSM \\ & \mathfrak{gl}_{1}, \mathfrak{gl}, g$	$\begin{smallmatrix} 0 \\ 1 e, \mu \\ 0 \\ 0 \\ 1 e, \mu \\ 2 e, \mu \\ 2 e, \mu \\ 1 \cdot 2 \tau + 0 \cdot 1 \ell \\ 2 \gamma \\ 1 e, \mu + \gamma \\ \gamma \\ 2 e, \mu (Z) \\ 0 \\ \end{smallmatrix}$	2-6 jets 3-6 jets 7-10 jets 2-6 jets 2-6 jets 3-6 jets 0-3 jets 0-2 jets	Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 4.7 20.3 20.3 4.8 4.8 5.8 10.5	2.2 2 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2.3.7.8% (mb)m(2) 3.7.9% (mb)m(2) m(2)	1405.7875 ATLAS-CONF-2013-062 1308.1841 1405.7875 1405.7875 1405.7875 ATLAS-CONF-2013-062 ATLAS-CONF-2013-063 1407.0603 ATLAS-CONF-2012-1401 ATLAS-CONF-2012-142 ATLAS-CONF-2012-142
3 rd gen. § med.	$\overline{g} \rightarrow b\overline{b}\overline{g}_{1}^{0}$ $\overline{g} \rightarrow t\overline{s}_{1}^{0}$ $\overline{g} \rightarrow t\overline{s}_{1}^{0}$ $\overline{g} \rightarrow b\overline{s}_{1}^{0}$	0 0 0-1 e, µ 0-1 e, µ	3 b 7-10 jets 3 b 3 b	Yes Yes Yes Yes	20.1 20.3 20.1 20.1	2 2 2 2 2	.25 TeV m(t_1^0)<400 GeV TeV m(t_1^0)<350 GeV 1.34 TeV m(t_1^0)<400 GeV 1.3 TeV m(t_1^0)<400 GeV	1407.0600 1308.1841 1407.0600 1407.0600
3rd gen. squarks direct production	$ \begin{array}{l} b_1 b_1 , b_1 \rightarrow b \ell_1^0 \\ b_1 b_1 , b_1 \rightarrow s \ell_1^0 \\ \bar{t}_1 (light), \bar{t}_1 \rightarrow b \ell_1^0 \\ \bar{t}_1 (light), \bar{t}_1 \rightarrow b \ell_1^0 \\ \bar{t}_1 \bar{t}_1 (light), \bar{t}_1 \rightarrow b \ell_1^0 \\ \bar{t}_1 \bar{t}_1 (light), \bar{t}_1 \rightarrow b \ell_1^0 \\ \bar{t}_1 \bar{t}_1 (light), \bar{t}_1 \rightarrow b \ell_1^0 $	$\begin{array}{c} 0\\ 2\ e,\mu\ ({\rm SS})\\ 1{\text -}2\ e,\mu\\ 2\ e,\mu\\ 2\ e,\mu\\ 0\\ 1\ e,\mu\\ 0\\ 0\\ 1\ e,\mu\\ 0\\ 3\ e,\mu\ (Z) \end{array} {\rm m}$	2 b 0-3 b 1-2 b 0-2 jets 2 b 1 b 2 b 0-0 jet/c-t 1 b 1 b	Yes Yes Yes Yes Yes Yes Yes ag Yes Yes	20.1 20.3 4.7 20.3 20.3 20.1 20 20.1 20.3 20.3 20.3 20.3	1, 100-803 GeV 2, 110/187 GeV 2, 110/187 GeV 3, 130/210 GeV 4, 130/210 GeV 4, 215-500 GeV 4, 215-500 GeV 4, 215-500 GeV 4, 216-500 GeV 4, 216-500 GeV 4, 216-500 GeV 5, 216-500 GeV	က(ပို)-(36 GeV) က(ပို)-26 က(ပို) က(ပို)-36 GeV က(ပို)-36 GeV က(ပို)-16 GeV က(ပို)-260 GeV က(ပို)-96 GeV က(ပို)-260 GeV က(ပို)-36 GeV က(ပို)-36 GeV က(ပို)-370 GeGeV က(ပို)-320 GeV	1308.2631 1404.2500 1208.4305, 1209.2102 1403.4853 1403.4853 1308.2631 1407.0633 1406.1122 1407.0608 1403.5222
EW direct	$ \begin{array}{c} \tilde{\ell}_{LR}\tilde{\ell}_{LR}, \tilde{\ell} \rightarrow \ell \tilde{K}_{1}^{0} \\ \tilde{\kappa}_{1}^{*}\tilde{\kappa}_{1}^{*}, \tilde{\kappa}_{1}^{*} \rightarrow \tilde{\ell} \nu \ell(\tilde{\nu}) \\ \tilde{\kappa}_{1}^{*}\tilde{\kappa}_{1}^{*}, \tilde{\kappa}_{1}^{*} \rightarrow \tilde{\ell} \nu \ell(\tilde{\nu}) \\ \tilde{\kappa}_{1}^{*}\tilde{\kappa}_{2}^{*} \rightarrow \tilde{\ell}_{1} \nu \tilde{\ell}_{L}(\ell(\tilde{\nu}), \ell) \tilde{\ell}_{L}(\ell(\tilde{\nu})) \\ \tilde{\kappa}_{1}^{*}\tilde{\kappa}_{2}^{*} \rightarrow W \tilde{\kappa}_{1}^{*} \tilde{\kappa}_{1}^{*} \\ \tilde{\kappa}_{1}^{*}\tilde{\kappa}_{2}^{*} \rightarrow W \tilde{\kappa}_{1}^{*} \tilde{\kappa}_{1}^{*} \\ \tilde{\kappa}_{2}^{*}\tilde{\kappa}_{2}^{*} \rightarrow W \tilde{\kappa}_{1}^{*} \tilde{\kappa}_{1}^{*} \\ \tilde{\kappa}_{2}^{*}\tilde{\kappa}_{2}^{*} \rightarrow \tilde{\kappa}_{L} \ell \end{array} $	2 e, µ 2 e, µ 2 τ 3 e, µ 2-3 e, µ 1 e, µ 4 e, µ	0 0 - 0 2 b 0	Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	1 90-325 GeV 1 143-465 GeV 1 100-350 GeV	$\begin{split} & m(\tilde{t}_{1}^{2}) + 0 \; \text{GeV} \\ & m(\tilde{t}_{1}^{2}) + m(\tilde{t}_{2}^{2}) + m(\tilde{t}_{1}^{2}) + 0 \; \text{GeV} \\ & m(\tilde{t}_{1}^{2}) + m(\tilde{t}_{2}^{2}) + m(\tilde{t}_{2}^{2}) + 0 \; \text{GeV} \\ & m(\tilde{t}_{1}^{2}) + m(\tilde{t}_{2}^{2}) + m(\tilde{t}_{2}^{2}) - 0 \; \text{Subprise decoupled} \\ & m(\tilde{t}_{1}^{2}) + m(\tilde{t}_{2}^{2}) + m(\tilde{t}_{2}^{2}) - 0 \; \text{Subprise decoupled} \\ & m(\tilde{t}_{1}^{2}) + m(\tilde{t}_{2}^{2}) + m(\tilde{t}_{2}^{2}) - 0 \; \text{Subprise decoupled} \end{split}$	1403.5294 1403.5294 1407.0350 1402.7029 1403.5294, 1402.7029 ATLAS-CONF-2013.093 1405.5086
Long-lived particles	Direct $\hat{\chi}_1^+ \hat{\chi}_1^-$ prod., long-lived $\hat{\chi}_1^+$ Stable, stopped \hat{g} R-hadron GMSB, stable $\hat{\tau}, \hat{\chi}_1^0 \rightarrow \hat{\tau}(\hat{e}, \hat{\mu}) + \tau(e, \hat{\mu})$ GMSB, $\hat{\chi}_1^0 \rightarrow y\hat{G}$, long-lived $\hat{\chi}_1^0$ $\hat{q}\hat{q}, \hat{\chi}_1^0 \rightarrow qq\mu$ (RPV)	Disapp. trk 0 μ) 1-2 μ 2 γ 1 μ, displ. vtx	1 jet 1-5 jets -	Yes Yes Yes	20.3 27.9 15.9 4.7 20.3	। । ३ 832 GeV ३ 832 GeV ३ 475 GeV ३ 1.0 1	$\begin{split} m(\tilde{t}_1^2) + m(\tilde{t}_1^2) = 160 \; \text{MeV}, r(\tilde{t}_1^2) = 0.2 \; \text{ns} \\ m(\tilde{t}_1^2) = 100 \; \text{GeV}, \; 10 \; \mu \text{scr}(\tilde{g}) < 1000 \; \text{s} \\ 10 < \tan \beta \leq 50 \; 0.4 < rr(\tilde{g}^2) < 2 \; \text{ns} \\ 0.4 < rr(\tilde{g}^2) < 2 \; \text{ns} \\ 1.5 < \operatorname{cres}(156 \; \text{mm}, \text{BR}(\mu) = 1, \; m(\tilde{t}_1^2) = 108 \; \text{GeV} \end{split}$	ATLAS-CONF-2013-069 1310.6584 ATLAS-CONF-2013-058 1304.6310 ATLAS-CONF-2013-092
RPV	$\begin{array}{l} LFV pp \rightarrow \mathfrak{P}_\tau + X, \mathfrak{P}_\tau \rightarrow e + \mu \\ LFV pp \rightarrow \mathfrak{P}_\tau + X, \mathfrak{P}_\tau \rightarrow o(\mu) + \tau \\ Biinear RPV CMSSM \\ H_\tau \widetilde{k}_1^\tau, \widetilde{k}_1^\tau \rightarrow MR_{1,\tau}^{\mathfrak{P}_t} \widetilde{k}_1^{\mathfrak{P}} \rightarrow e \mathfrak{e}_{\mu,\tau} e_{\mu} \mathfrak{p}_{\tau} \\ \widetilde{k}_1^\tau \widetilde{k}_1^\tau, \widetilde{k}_1^\tau \rightarrow MR_{1,\tau}^{\mathfrak{P}_t} \widetilde{k}_1^{\mathfrak{P}} \rightarrow \tau \tau \mathfrak{P}_e, er \mathfrak{P}_\tau \\ \widetilde{k}_1^\tau \widetilde{k}_1^\tau, \widetilde{k}_1^\tau \rightarrow MR_{1,\tau}^{\mathfrak{P}_t} \widetilde{k}_1^\tau \rightarrow \tau \tau \mathfrak{P}_e, er \mathfrak{P}_\tau \\ \widetilde{\delta}^{-n} eq q \\ \mathfrak{g} \rightarrow \widetilde{\mathfrak{q}}_1 r, \widetilde{\mathfrak{r}}_1 \rightarrow b s \end{array}$	$\begin{array}{c} 2 \ e, \mu \\ 1 \ e, \mu + \tau \\ 2 \ e, \mu \ (\text{SS}) \\ 4 \ e, \mu \\ 3 \ e, \mu + \tau \\ 0 \\ 2 \ e, \mu \ (\text{SS}) \end{array}$	0-3 b 	- Yes Yes - Yes	4.6 20.3 20.3 20.3 20.3 20.3 20.3	P, P, P, P, P, P, P, P, P, P,	$\begin{array}{ccc} \textbf{1.61 TeV} & \mathcal{A}_{11}=0.10, \mathcal{A}_{122}=0.05\\ \textbf{TeV} & \mathcal{A}_{11}=0.10, \mathcal{A}_{1222}=0.05\\ \textbf{1.35 TeV} & \mathcal{A}_{121}=0.05, \mathcal{A}_{1222}=0.05\\ \textbf{m}(\overline{n}_1)=0.22\text{cm}(\overline{n}_1), \mathcal{A}_{121}=0\\ \textbf{m}(\overline{n}_1)=0.22\text{cm}(\overline{n}_1), \mathcal{A}_{121}=0\\ \textbf{BR}(r)=0.82\text{m}(\overline{n}_1), \mathcal{A}_{121}=0\\ \textbf{BR}(r)=0.88\text{m}(r)=0.56\text{m}(r$	1212.1272 1212.1272 1404.2500 1405.5086 1405.5086 ATLAS-CONF-2013-091 1404.250
Other	Scalar gluon pair, sgluon— $q\bar{q}$ Scalar gluon pair, sgluon— $t\bar{t}$ WIMP interaction (D5, Dirac χ)	0 2 e, µ (SS) 0	4 jets 2 b mono-jet	Yes Yes	4.6 14.3 10.5	sgluon 100-287 GeV sgluon 350-800 GeV M* scale 704 GeV	incl. limit from 1110.2693 m(x)<80 GeV, limit of <687 GeV for D8	1210.4826 ATLAS-CONF-2013-051 ATLAS-CONF-2012-147
	Vs = 7 TeV full data	/s = 8 TeV artial data	$\sqrt{s} = full$	8 TeV data		10-1	1 Mass scale [TeV]	

ATLAS Preliminary $\sqrt{s} = 7.8 \text{ TeV}$

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1ar theoretical signal cross section uncertainty

Joana Machado Miguéns (FCUL, LIP - Lisbon)

 $H \rightarrow WW^* \rightarrow \ell \nu \ell \nu$ with ATL

University of Pennsylvania - 16.09.2014

74 / 42