LM337L 3-Terminal Adjustable Regulator

General Description

The LM337L is an adjustable 3-terminal negative voltage regulator capable of supplying 100 mA over a 1.2V to 37V output range. It is exceptionally easy to use and requires only two external resistors to set the output voltage. Furthermore, both line and load regulation are better than standard fixed regulators. Also, the LM337L is packaged in a standard TO-92 transistor package which is easy to use.

In addition to higher performance than fixed regulators, the LM337L offers full overload protection. Included on the chip are current limit, thermal overload protection and safe area protection. All overload protection circuitry remains fully functional even if the adjustment terminal is disconnected. Normally, only a single 1 μF solid tantalum output capacitor is needed unless the device is situated more than 6 inches from the input filter capacitors, in which case an input bypass is needed. A larger output capacitor can be added to improve transient response. The adjustment terminal can be bypassed to achieve very high ripple rejection ratios which are difficult to achieve with standard 3-terminal regulators.

Besides replacing fixed regulators, the LM337L is useful in a wide variety of other applications. Since the regulator is “floating” and sees only the input-to-output differential voltage, supplies of several hundred volts can be regulated as long as the maximum input-to-output differential is not exceeded.

Also, it makes an especially simple adjustable switching regulator, a programmable output regulator, or by connecting a fixed resistor between the adjustment and output, the LM337L can be used as a precision current regulator. Supplies with electronic shutdown can be achieved by clamping the adjustment terminal to ground which programs the output to 1.2V where most loads draw little current.

Features

- Adjustable output down to 1.2V
- Guaranteed 100 mA output current
- Line regulation typically 0.01%/V
- Load regulation typically 0.1%
- Current limit constant with temperature
- Eliminates the need to stock many voltages
- Standard 3-lead transistor package
- 80 dB ripple rejection
- Output is short circuit protected

Connection Diagram

Typical Applications

1.2V–25V Adjustable Regulator

Full output current not available at high input-output voltages

\[-V_{OUT} = -1.25\left(1 + \frac{R_2}{240}\right)\]

*\(C_1 = 1 \mu F\) solid tantalum or 10 μF aluminum electrolytic required for stability

*\(C_2 = 1 \mu F\) solid tantalum is required only if regulator is more than 4 in from power supply filter capacitor

Regulator with Trimmable Output Voltage

Trim Procedure:

- If \(V_{OUT}\) is \(-23.08V\) or bigger, cut out \(R_3\) (if smaller, don’t cut it out).
- Then if \(V_{OUT}\) is \(-22.47V\) or bigger, cut out \(R_4\) (if smaller, don’t).
- Then if \(V_{OUT}\) is \(-22.16V\) or bigger, cut out \(R_5\) (if smaller, don’t).

This will trim the output to well within 1% of \(-22.00V\) DC, without any of the expense or trouble of a trim pot (see LB-46). Of course, this technique can be used at any output voltage level.

The LM337L is available in a standard TO-92 transistor package and a SO-8 surface mount package. The LM337L is rated for operation over a \(-25^\circ C\) to \(+125^\circ C\) range.

For applications requiring greater output current in excess of 0.5A and 1.5A, see LM137 series data sheets. For the positive complement, see series LM117 and LM317L data sheets.

Order Number LM337LM or LM337LZ

See NS Package Number M08A or Z03A

\[1995\] National Semiconductor Corporation

RND 0204M115/Printed in U. S. A.
Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Power Dissipation Internally Limited
Input–Output Voltage Differential 40V

Operating Junction Temperature Range −25°C to +125°C
Storage Temperature −55°C to +150°C
Lead Temperature (Soldering, 10 sec.) 300°C
Plastic Package (Soldering 4 sec.) 260°C
ESD rating to be determined.

Operating Temperature Range b
25°C to 125°C

Storage Temperature b
55°C to 150°C

Lead Temperature (Soldering, 10 sec.) 300°C
Plastic Package (Soldering 4 sec.) 260°C
ESD rating to be determined.

Electrical Characteristics
(Note 1)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line Regulation</td>
<td>$T_A = 25°C, 3V \leq V_{IN} - V_{OUT} \leq 40V, \quad (Note 2)$</td>
<td>0.01</td>
<td>0.04</td>
<td>%/V</td>
<td></td>
</tr>
<tr>
<td>Load Regulation</td>
<td>$T_A = 25°C, 5 mA \leq I_{OUT} \leq I_{MAX}, \quad (Note 2)$</td>
<td>0.1</td>
<td>0.5</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>Thermal Regulation</td>
<td>$T_A = 25°C, 10 ms Pulse</td>
<td>0.04</td>
<td>0.2</td>
<td>%/W</td>
<td></td>
</tr>
<tr>
<td>Adjustment Pin Current</td>
<td>$5 mA \leq I_L \leq 100 mA, \quad 3V \leq</td>
<td>50</td>
<td>100</td>
<td>µA</td>
<td></td>
</tr>
<tr>
<td>Adjustment Pin Current Change</td>
<td>$5 mA \leq I_L \leq 100 mA, \quad 3V \leq</td>
<td>0.2</td>
<td>5</td>
<td>µA</td>
<td></td>
</tr>
<tr>
<td>Reference Voltage</td>
<td>$3V \leq</td>
<td>1.20</td>
<td>1.25</td>
<td>1.30</td>
<td>V</td>
</tr>
<tr>
<td>Line Regulation</td>
<td>$3V \leq</td>
<td>0.02</td>
<td>0.07</td>
<td>%/V</td>
<td></td>
</tr>
<tr>
<td>Load Regulation</td>
<td>$5 mA \leq I_{OUT} \leq 100 mA, \quad (Note 2)$</td>
<td>0.3</td>
<td>1.5</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>Temperature Stability</td>
<td>$T_{MIN} \leq T_j \leq T_{MAX}$</td>
<td>0.65</td>
<td>%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum Load Current</td>
<td>$</td>
<td>V_{IN} - V_{OUT}</td>
<td>40V</td>
<td>5</td>
<td>mA</td>
</tr>
<tr>
<td>Current Limit</td>
<td>$</td>
<td>V_{IN} - V_{OUT}</td>
<td>15V</td>
<td>2.2</td>
<td>3.5</td>
</tr>
<tr>
<td>Rms Output Noise, % of V_{OUT}</td>
<td>$T_A = 25°C, 10 Hz \leq f \leq 10 kHz$</td>
<td>0.003</td>
<td>%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ripple Rejection Ratio</td>
<td>$V_{OUT} - V_{REF} = 10V, F = 120 Hz, C_{ADJ} = 0$</td>
<td>66</td>
<td>65</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>Long-Term Stability</td>
<td>$T_A = 125°C$</td>
<td>0.3</td>
<td>1</td>
<td>%</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: Unless otherwise specified, those specifications apply $-25°C \leq T_j \leq +125°C$ for the LM337L; $| V_{IN} - V_{OUT} | 5V$ and $I_{OUT} = 40 mA$. Although power dissipation is internally limited, these specifications are applicable for power dissipations up to 625 mW. I_{MAX} is 100 mA.

Note 2: Regulation is measured at constant junction temperature, using pulse testing with a low duty cycle. Changes in output voltage due to heating effects are covered under the specification for thermal regulation.

Note 3: Thermal resistance of the TO-92 package is 160°C/W junction to ambient with 0.4" leads from a PC board and 160°C/W junction to ambient with 0.125" load length to PC board. The M package R_{JA} is 180°C/W in still air.
Physical Dimensions inches (millimeters)
Physical Dimensions inches (millimeters) (Continued)

TO-92 Plastic Package (Z)
Order Number LM337LZ
NS Package Number Z03A

Life Support Policy

National's products are not authorized for use as critical components in life support devices or systems without the express written approval of the President of National Semiconductor Corporation. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.