Abstract

The ATLAS inner detector consists of three sub-systems: the pixel detector spanning the radius range 4cm-20cm, the semiconductor tracker at radii from 30 to 52 cm, and the transition radiation tracker (TRT), tracking from 56 to 107 cm. The TRT provides a combination of continuous tracking with many projective measurements based on individual drift tubes (or straws) and of electron identification based on transition radiation from fibres or foils interleaved between the straws themselves. This paper describes the on and off detector electronics for the TRT as well as the TRT portion of the data acquisition (DAQ) system.

Version of December 12, 2007
Contents

Front End - On Detector

1. ASDBLR
 1.1 TRT Signal Processing 10
 1.2 Design Goals 10
 1.3 Description of the ASDBLR
 1.3.1 Dual Preamp 11
 1.3.2 Shaping Stages 13
 1.3.3 Baseline Restorer 13
 1.3.4 High and Low level Discriminator 13
 1.3.5 Ternary Driver 13
 1.4 Wafer Fabrication 14
 1.5 ASDBLR Packaging 15
 1.6 ASDBLR Testing 15
 1.7 Radiation Hardness 16

2. DTMROC
 2.1 Introduction 19
 2.2 Analog Blocks
 2.2.1 Ternary Receiver 20
 2.2.2 LVDS Interface 21
 2.2.3 Digital to Analog Converters 21
 2.2.4 Testpulse Generation 22
 2.2.5 Temperature and Voltage Sense 22
 2.3 Timing .. 23
 2.3.1 DLL 23
 2.3.2 Latch 23
 2.4 Digital Blocks
 2.4.1 Pipeline 23
 2.4.2 Drandomizer 24
 2.4.3 Serializer 24
 2.4.4 Command Decoder 24
 2.4.5 Error Handling 24
 2.5 Measured Performance 25

3. Board Designs
 3.1 Introduction 26
 3.2 End Cap Boards
 3.2.1 ASDBLR Boards 27
 3.2.2 DTMROC Triplet Boards 27
 3.2.3 Shielding 28
 3.2.4 Power Distribution 28
 3.3 Barrel Boards 29
3.3.1 Design Constraints .. 29
3.3.2 Design Rules ... 30
3.3.3 Barrel Printed Circuit Boards 31
3.3.4 Power Distribution .. 32
3.4 Testing Program ... 33

4 Cooling and Cabling .. 34
4.1 Cabling .. 34
 4.1.1 Detector to Patch Panels 34
 4.1.2 Patch Panels to Control room 36
4.2 Cooling .. 36
 4.2.1 Power Dissipation - Front End 37
 4.2.2 Power dissipation Patch Panels 37
 4.2.3 Design and deployment 37

II Patch Panels ... 39

5 Introduction .. 39

6 TRT-TTC Patch Panels 40
 6.1 Overview and Functionality 40
 6.1.1 I/O compensation and filtering 40
 6.1.2 Clock Fine Delay 41
 6.1.3 Temperature Read-out 41

7 TRT-ROD Patch Panel 42
 7.1 Inputs and Outputs 42
 7.2 Concatenation and Serialization 42

8 Interlocks, Controls and DCS 43
 8.1 Overview of architecture of the DCS 43
 8.1.1 Components .. 43
 8.2 Tools and methods 45
 8.2.1 PVSS .. 45
 8.2.2 Finite State Machine methodology 46
 8.3 Detector Safety .. 48
 8.3.1 DCS protections 48
 8.3.2 TRT Hardware Interlock 48

III Back End Electronics, DAQ and Power 52

9 Timing, Trigger, Control (TTC) 52
 9.1 Introduction .. 52
 9.2 Position of TRT-TTC in the TRT Detector 52
 9.2.1 Context .. 52
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.2.2 TTC segmentation</td>
<td>53</td>
</tr>
<tr>
<td>9.3 TRT-TTC Interfaces and Functionality</td>
<td>54</td>
</tr>
<tr>
<td>9.3.1 Modes of operation</td>
<td>54</td>
</tr>
<tr>
<td>9.3.2 Interfaces</td>
<td>55</td>
</tr>
<tr>
<td>9.4 Integration in the system and performance</td>
<td>56</td>
</tr>
<tr>
<td>10 Readout Drivers (ROD)</td>
<td>56</td>
</tr>
<tr>
<td>10.1 Introduction</td>
<td>56</td>
</tr>
<tr>
<td>10.2 ROD-TTC communication</td>
<td>57</td>
</tr>
<tr>
<td>10.3 ROD-Patch Panel communication</td>
<td>57</td>
</tr>
<tr>
<td>10.4 Data Flow</td>
<td>58</td>
</tr>
<tr>
<td>10.5 Compression</td>
<td>59</td>
</tr>
<tr>
<td>10.6 Self-test features</td>
<td>60</td>
</tr>
<tr>
<td>11 Data Acquisition</td>
<td>60</td>
</tr>
<tr>
<td>11.1 ATLAS Trigger and DAQ Framework</td>
<td>60</td>
</tr>
<tr>
<td>11.2 TRT Scope and Configuration</td>
<td>61</td>
</tr>
<tr>
<td>11.3 Readout Scheme</td>
<td>61</td>
</tr>
<tr>
<td>11.3.1 Physics Data</td>
<td>61</td>
</tr>
<tr>
<td>11.3.2 Calibration Data</td>
<td>62</td>
</tr>
<tr>
<td>11.3.3 Monitoring</td>
<td>62</td>
</tr>
<tr>
<td>11.3.4 ATLAS Tools and the TRT Viewer</td>
<td>62</td>
</tr>
<tr>
<td>11.3.5 Voltages and Temperatures</td>
<td>63</td>
</tr>
<tr>
<td>12 High Voltage Power</td>
<td>63</td>
</tr>
<tr>
<td>12.1 Requirements</td>
<td>63</td>
</tr>
<tr>
<td>12.2 HV Sys power supply</td>
<td>65</td>
</tr>
<tr>
<td>12.3 Implementation</td>
<td>65</td>
</tr>
<tr>
<td>12.4 Control</td>
<td>66</td>
</tr>
<tr>
<td>13 Low Voltage Power</td>
<td>68</td>
</tr>
<tr>
<td>13.1 Requirements</td>
<td>68</td>
</tr>
<tr>
<td>13.2 MARATON WIENER supplies</td>
<td>69</td>
</tr>
<tr>
<td>13.3 Overall efficiency</td>
<td>69</td>
</tr>
<tr>
<td>13.4 Control</td>
<td>70</td>
</tr>
<tr>
<td>13.4.1 Bulk Supplies</td>
<td>70</td>
</tr>
<tr>
<td>13.4.2 Patch Panels</td>
<td>70</td>
</tr>
<tr>
<td>13.4.3 Control and monitoring</td>
<td>71</td>
</tr>
<tr>
<td>IV Installation, Integration and Performance</td>
<td>73</td>
</tr>
<tr>
<td>14 Installation/Integration/Testing</td>
<td>73</td>
</tr>
<tr>
<td>14.1 Front End Board Initial Tests and Preparation</td>
<td>73</td>
</tr>
<tr>
<td>14.2 Front End Board Installation and Tests</td>
<td>73</td>
</tr>
<tr>
<td>14.3 TRT Stand-alone noise and system tests</td>
<td>74</td>
</tr>
</tbody>
</table>
List of Figures

1. Overview of the TRT electronics from straws to Back End hardware in USA.
2. Block Diagram of one channel of the ASDBLR.
4. Response at the Shaper monitor output of the first DMILL prototype ASDBLR indicated a potential for harmonic ring when the capacitance at the inputs was not balanced as in the lower of the two traces where the capacitance on one input was 22pF and 7pF on the other.
5. Two ASDBLR and one DTMROC ASIC, in their custom FPGA packages are shown in comparison with a US dime for size comparison. The solder balls are 300 microns in diameter on an 800 micron grid.
6. Measured DMILL SOI transistor current gain as a function of current density.
7. Measured change in ASDBLR threshold current versus DTMROC DAC setting (one dac count = 5mV) after exposure to $3.5 \times 10^{14} \text{n/cm}^2 \text{1MeV NIEL}$ neutrons at Frances Prospero facility. Using the measured threshold current the worst case transistor gain was estimated to be 55 after exposure. These devices were annealed prior to measurement.
8. The plot above shows the measured ASDBLR threshold offsets before and after exposure to 7MRad of Gamma radiation. A small amount of broadening is evident in the distribution plotted with the solid line.
9. Overall block diagram of the DTMROC chip.
10. DTMROCs time-measuring performance with the nominal, 2.5 V, and 2.0 V power supply. A 4.0 ns wide tracking pulse was injected at 100ps intervals across three full clock periods, 75ns in total. The picture shows the leading (red) and falling (blue) edges fit deviations and differential non-linearity as sampled by a single chip channels.
11. RAM access rate vs. Vdd and for various process variations. Note that for DTMROC production run, the slowest (125% on this plot) process variation was not packaged.
12. A Wheel (l) and B Wheel (r) ASDBLR boards top view showing the ASDBLR chips and the four multi-pin white connectors going to the Triplet Board. The semi-circular cutouts in the board edges are designed to clear plumbing and HV connections to the wheels.
13. End Cap Triplet board showing the four DTMROC chips per segment with the power and data connector on the right. The four white jumpers between segments carry control and data signals and power and power returns. Note that the breakaway bars at top and bottom of the triplet are removed after testing.
14 End on view of the TRT Barrel during above ground testing at CERN before installation in the ATLAS detector hall. Each of the three types of modules (1, 2, and 3) is bisected by a member from the Barrel Support Structure. These six different triangular shapes define the geometry of the front end boards.

15 Cross-sectional view of a barrel module tension and HV plate region. The Protection Board (labeled 'Electronics Card') is shown plugged into sockets in the tension plate. The active electronics plugs into and is parallel to the Protection Board.

16 Cross section of the printed circuit planes showing the digital and analog domains within the 14 layer stackup. Four different classes of blind vias, two for the digital and two for the analog domain are used for almost all connections except direct connections for ASDBLR outputs to the DTMROC and control signals from the DTMROC. Power is provided from a through hole connector. The edge plating noted on the left of the figure wipes the RF fingers on the Barrel Support Structure (BSS).

17 The photograph above shows a module 3 barrel board (two power and Clock Groups) with one through hole and one pig-tailed power connector and two data connectors. The DTMROC FBGA chips can be seen on the top of this board.

18 Partially assembled End Cap showing two full cable trays at the top and one empty cable tray at the bottom. Each tray carries cables for 1/32nd of the detector and acts as part of the outer Faraday cage of the detector. The blue cables are the 36 AWG data and control shielded twisted pairs, the heavier orange-brown cables are low voltage. The light colored HV cables are just barely visible in the upper tray on the left. In this view the triplet boards serving the A type Wheel nearest the interaction point are on the left and the PPF1 connectors are just out of the picture on the right.

19 Block diagram of the monophase cooling system.

20 ATLAS Patch Panel 2 locations.

21 Global architecture of the ATLAS DCS including control computers, connections to the infrastructure, and the ATLAS Detector Control System.

22 Event manager architecture showing the various layers.

23 The TRT High Voltage system state machine.

24 Block diagram of the TRT-HWI system.

25 The TRT back end electronics block diagram showing the TTC and ROD modules in a back end crate connected to front end and readout blocks.

26 TRT-TTC06 partition in the Barrel

27 TRT-TTC06 partition in the end-cap

28 The TRT-TTC06 VME Module

29 View of a full crate housing 420 HV channels.

30 HV distribution scheme

31 View of the low voltage distribution system
Per channel 300kHz threshold distributions for Barrel electronics on (green), off (red), on-off (blue) the detector and then difference from chip average (purple). Note that the increase in the 300 kHz threshold when the electronics are mounted in place is due to the detector capacitance which raises the equivalent noise charge figure for the ASDBLR. The smaller capacitance of the first nine layers of ‘short’ straws is clearly evident in the difference (blue) distribution.

A side of the TRT Barrel showing the threshold setting required to obtain a 300 kHz average noise rate in each channel.

Cosmic ray tracks in the TRT Barrel from the “M3” run in ATLAS using the Tile Cal trigger.

List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Design goals for the TRT front end electronics</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>ASDBLR Single Channel Ternary Encoded output</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>Encoding function of the current in units “U” of current that are sourced from the DTMROC inputs</td>
<td>21</td>
</tr>
<tr>
<td>4</td>
<td>AR Board Designs</td>
<td>32</td>
</tr>
<tr>
<td>5</td>
<td>Number of HV feeds</td>
<td>64</td>
</tr>
<tr>
<td>6</td>
<td>Estimated maximum current per HV channel at full luminosity</td>
<td>64</td>
</tr>
<tr>
<td>7</td>
<td>HVSys power supply characteristics</td>
<td>66</td>
</tr>
<tr>
<td>8</td>
<td>Current needed per supply</td>
<td>68</td>
</tr>
<tr>
<td>9</td>
<td>MARATON devices at each location in UX15</td>
<td>69</td>
</tr>
<tr>
<td>10</td>
<td>Voltage drops</td>
<td>70</td>
</tr>
</tbody>
</table>

Introduction

The ATLAS TRT electronics is designed to satisfy a number of challenging requirements -

- Input signal sensitivity from about 2 to 100 femto Coulombs
- High and low threshold for transition radiation detection and tracking respectively
- Input signal rate per channel up to 20 MHz
- Time measurement accuracy to 1 ns rms
- More than 350,000 input signals
- Level 1 buffering to $>4 \mu s$
- Level 1 trigger rate up to 100 kHz
- Radiation levels >10 Mrad and 10^{14} n/cm2
- Tight on detector spatial constraints
- Stringent detector radiation length goals
- At source cooling - no net heat load to the ATLAS cavern
- Very high reliability (expect no access to detector for extended periods)
- Distance from detector to counting room >80 m
- At maximum Level 1 Accept rates, the data rate out of the detector is over 100 GB/s
- Full compliance with the ATLAS Trigger DAQ back end standards

The solutions adopted by the collaboration and detailed in this note involve separating the electronics system into three geographically distinct parts - on-detector or Front End, intermediate Patch Panel and counting room Back End regions. The Front End electronics use full TRT custom radiation hard integrated circuits (the ASDBLR and DTMROC below), the Patch Panels boards located in the midst of the ATLAS muon system use radiation tolerant commercial parts plus a few CERN designed custom chips, and the Back End electronics in the USA15 counting room are implemented entirely with commercial components except for a few specialized LHC custom timing circuits. Power for the Front End and Patch Panel areas relies on LHC custom analog regulators supplied from commercial bulk voltage supplies especially designed for LHC conditions. HV power for the straw detectors is provided by semi-custom crates of precision low current HV supplies with monitors and adjustable trips. The basic TRT electronics blocks are shown in Figure 1.

Signal transmission from the Front End to the Patch Panels is, unlike most other ATLAS sub-detectors, implemented entirely with LVDS signals running on 36 AWG shielded twisted

1) Low Voltage Differential Signalling
pair. This solution was chosen because of the distributed nature of the data sources (each DTMROC chip produces a 40 Mbit/sec data stream at the full L1Accept rate and the almost 22,000 DTMROCs are spread over many square meters of detector surface) and the cost and power penalties associated with optical links. The TRT output data is converted to optical fiber at the Patch Panels where 30 DTMROC outputs can be merged to form a single 1.2 Gb/s fiber output - saving the cost of running over 20,000 shielded twisted pairs nearly 100 meters.

The Back End design, a TRT specific ROD and TTC plus custom P3 backplane board set is similar to other ATLAS detectors but implements many TRT specific functions for control and data acquisition.

We also discuss the DCS system that controls and monitors the TRT and its parts and the DAQ system that sets up and then moves data from the Front End into the ATLAS Level 2 and Level 3 pipelines.
Part I
Front End - On Detector

1 ASDBLR

1.1 TRT Signal Processing

The analog signal processing for the ATLAS TRT requires detection of avalanche signals from a few primary drift electrons in the TRT straw sensors with nanosecond timing precision at counting rates as high as 18 MHz in the presence of a high radiation background. To minimize noise and pickup it was decided to mount the readout electronics on the detector as close to the anode wires as possible. Direct connection to the wire anodes was made possible by choosing to operate the straw cathode at a high negative potential. The closely packed 4mm diameter straws represent a high density challenge for on-detector electronics that was addressed by the design of a custom analog ASIC (ASDBLR) in the BiCMOS DMILL radiation hard process. The design primarily exploits NPN bipolar transistors for their intrinsically low noise, high current gain and excellent matching. This ASIC provides the complete analog signal processing chain for 8 straws. It amplifies and shapes the straw signals eliminating the long ion tail and provides baseline restoration prior to presenting the signal to a dual comparator section. The output of the ASDBLR is a three level differential (ternary) current coupled off chip to a custom receiver on it’s companion chip, the DTMROC, where the comparator output pulse width is recorded in 3.125 ns bins and stored in a pipeline. The 16 channel DTMROC provides timing, storage and control for 2 ASDBLR ASICS. More complete descriptions of the ASDBLR can be found in [1].

1.2 Design Goals

The average electron drift velocity in the TRT straw gas is \(\sim 50 \mu m/ns \). Ignoring the curvature of the primary path we can use this to set a limit on the timing required to satisfy our position resolution specification. The electronics goal of 1ns timing resolution is then small compared with the position resolution goal of less than 150 \(\mu m \). The wide dynamic range of straw track signals, up to 100 times threshold, high occupancy and the 25ns beam crossing rate make this a challenging goal. Electrons and gas atoms ionized in the avalanche process near the wire induce a signal current as they drift toward the anode and the cathode respectively. The time development of this signal current is primarily determined by the type of gas and the anode wire diameter. The ASDBLR employs a traditional fixed time shaping technique to remove this unwanted, predictable, signal by building a mirror image impulse response into the signal processing electronics so that the ion tail and mirror signal cancel after the initial avalanche signal. After this cancellation process only a small fraction of the total avalanche signal is available. In our case about 5% or 0.15fC per primary electron at a gas gain of \(2.5 \times 10^4 \). Since our objective is to detect the earliest clusters of electrons arriving at the wire, the electronics must add as little noise as possible to the incoming signal. After careful study and several design iterations, an electronics peaking time of 7.5 ns with a semi-gaussian shape after ion tail cancellation was chosen. This allows integration of the avalanche signal from
Table 1: Design goals for the TRT front end electronics.

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peaking Time for Track Detection</td>
<td>7.5ns</td>
</tr>
<tr>
<td>Peaking time for TR photon detection</td>
<td>10ns</td>
</tr>
<tr>
<td>Double Pulse Resolution</td>
<td>< 25ns</td>
</tr>
<tr>
<td>Intrinsic Electronics Noise</td>
<td>< 0.3 fC RMS</td>
</tr>
<tr>
<td>Operational Track Disc. Threshold</td>
<td>2fC</td>
</tr>
<tr>
<td>Maximum Threshold for TR photons</td>
<td>120 fC</td>
</tr>
<tr>
<td>10 year Neutron exposure</td>
<td>$3 \times 10^{14}/cm^2$</td>
</tr>
<tr>
<td>Total Dose (10 year) Ionizing Radiation</td>
<td>5 Mrad</td>
</tr>
</tbody>
</table>

the first few clusters of drift electrons arriving at the wire to give a trigger point based on a signal significantly higher than the intrinsic and systematic noise. TR photons created by energetic electrons transiting layers of polypropylene radiator placed between the straws are stopped primarily by Xenon atoms in the gas mixture. This high Z inert gas allows efficient absorption of TR photons whose energy is in the range of 5-15 keV, well above the typical 2 KeV deposited by a minimum ionizing track. Extending the peaking time of the TR photon detection circuit to 10ns allows integration of the direct and reflected signal from the far end of the unterminated 0.5 - 0.7m straw. This reduces the variation in amplitude versus position of the avalanche along the straw \[2\]. The basic design goals for the ATLAS TRT front end electronics are summarized in Table 1.

1.3 Description of the ASDBLR

The ASDBLR consumes about 40mW per channel and provides the complete analog signal processing chain for eight straw tubes from straw anode input to a three level digital output that signals arrival of the earliest ions at the wire with one level and the presence of a signal compatible with a Transition Radiation photon for the other level.

Figure 2 shows the signal processing blocks: Dual Preamp, Shaper, Baseline Restorer, High and Low level discriminator and driver. This largely differential design depends on good device matching rather than absolute values of process devices and has the benefit of providing a rate independent power consumption.

1.3.1 Dual Preamp

The dual cascoded common emitter preamp is optimized for low-noise and radiation resistance. The duplicate circuits are interleaved in the layout to equalize topological effects and provide the best DC-balance output to the differential shaper stage. The common emitter inputs are self biasing at approximately +750mV. Since the preamp input is directly coupled to the wire, the common emitter input sets the anode potential. Anode current from the avalanche process directly flows into the preamp input. At high rate operation the average straw anode current is as high as 10uA but does not significantly affect the operation of the circuit. The gain of the preamp is 1.5 mV/fC with a peaking time of 1.5 ns for an impulse input. Both preamp inputs for each channel are bonded out to package leads although only one input is attached to the...
straw wire anode. This offers an important benefit in helping control channel to channel pickup external to the chip and reduces sensitivity to common mode signals.

Significant attention was given to input protection since the input is directly attached to the straw anode wire. A breakdown in the straw sensor shorts the cathode, which is held at a negative high voltage to the anode discharging significant current into the preamp input. A fast response input protection diode was implemented using the normally reverse biased collector-base junction of an array of large, single stripe, NPN transistors. The protection accommodation on the preamp input attached to the wire is significantly larger than that on the other, typically unused input. The ‘unused’ input can be attached to a board level trace to help balance the common mode charge injection in the interconnect between the straw and the preamp. A total of 380μm of emitter length provides 0.5 mJ breakdown protection when a series 24 Ohm resistor is used between this input and the wire. This external resistor contributes 8% of the total intrinsic noise at the track comparator input.

In low noise amplifier designs, the input transistor is the most significant source of additional noise. This arises from thermal noise due to unavoidable resistance in the base and from the statistics of the base current. Usually the thermal noise is ameliorated by increasing the size of the input transistor to decrease the base resistance, but that this results in reduced current density. Radiation studies (See Section 1.7) of the DMILL transistors showed that in the high radiation environment of the ATLAS detector the minimum acceptable current density is 5μA/μm of emitter length. At smaller values the gain of the transistor falls to below 30 after 10 years of ATLAS operation. Noise optimization showed that a collector current of 700μA is a near optimal tradeoff between low power consumption and low intrinsic noise in the input transistor. This optimization sets the size of the input transistor to approximately 100μm. Each input transistor is realized as two physical transistors in parallel which allows the layout to use a cross quad configuration. This cross quad helps to match the thermal and topological environment of the two preamps.

The dominant pole of the preamp is created by the parallel combination of the 800 fF feedback capacitance in parallel with the 20kΩ feedback resistor. Although these components help minimize noise and create a 275 Ohm input impedance that is reasonably independent of fre-
quency, they result in the creation of a 16ns "preamp tail" that must be cancelled in the third stage of the shaper. The dynamic range of the preamp is greater than 600fC making it the last stage to saturate from large signal depositions in the straw. The total current per channel is about 2.4mA.

1.3.2 Shaping Stages

The differential three-stage shaper and preamp together provide four equivalent 1.5 ns poles of shaping to produce a nearly symmetric response with 5 ns peaking time for a straw point ionization input. The first shaper stage converts the dual preamp output to a differential signal with a gain of two. The second stage provides ion tail cancellation for either Xenon or more conventional Argon-based gases, as selected externally. A full scale range of 600 fC allows the tail cancellation to be effective over the widest feasible range of charge depositions. The final shaping stage contains a pole-zero network that cancels the short tail added by preamp feedback components and limits the maximum output response of the shaper to 140 fC equivalent input, the largest expected threshold setting for the TR discriminator.

1.3.3 Baseline Restorer

The differential signal from the shaper is AC-coupled through 8 pF capacitors into the baseline restorer (BLR) where a bridge diode network with dynamic current control (Figure 3) provides a variable impedance shunt across the AC coupled differential signal. Current in the bridge determines the shunt impedance and is dependent on the polarity of the differential output. The shunt impedance increases as signals of the desired polarity are passed to the next stage (discriminator), and decreases when the shaper output returns to baseline. Overshoot (due to discharge of the coupling capacitors) is sensed and results in an increase in current in the bridge, lowering its shunt impedance across the outputs and quickly returns the signal to baseline.

1.3.4 High and Low level Discriminator

The BLR is followed by two independent discriminators, one with a low threshold for tracking, the other with a higher threshold for transition radiation (TR) detection. The low threshold discriminator contains additional integrations to increase the 5 nsec peaking time of the shaper output to 7.5 nsec and can reliably be set to trigger on signals between 1 and 10 fC. The low level discriminator is designed to mark the time of arrival of the avalanche signal from the earliest primary electrons liberated by an ionizing track. Since the primaries move at a predictable velocity the time information can be used to designate the closest point of approach of the track to the wire. The TR discriminator utilizes the same basic configuration, but has a 10 : 1 attenuation at its input and adds 5 ns to the shaping time to allow integration of the prompt and reflected straw signal for accurate detection of the Transition Radiation photons.

1.3.5 Ternary Driver

The low level and TR discriminators switch separate 200uA currents between shared differential outputs to form a current sum of the combined discriminator outputs. This simple encoding
Table 2: ASDBLR Single Channel Ternary Encoded output

<table>
<thead>
<tr>
<th>Signal Detected</th>
<th>Ternary Plus</th>
<th>Ternary Minus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Below Low and High Threshold</td>
<td>-200 μA</td>
<td>0 μA</td>
</tr>
<tr>
<td>Above Low Threshold</td>
<td>-100 μA</td>
<td>-100 μA</td>
</tr>
<tr>
<td>Above Low and High Threshold</td>
<td>0 μA</td>
<td>-200 μA</td>
</tr>
</tbody>
</table>

scheme shown in Table 2 is based on the assumption that the track discriminator output is always present when the TR discriminator is triggered due to its lower threshold [1].

1.4 Wafer Fabrication

The ASDBLR was fabricated in a 0.8μm minimum feature size, BiCMOS Silicon On Insulator (SOI) process. Two prototyping cycles allowed us to understand issues of yield and substrate pickup that were not apparent from manufacturer provided information. Our previous experience with several generations of similar analog wire chamber ASICS led us to expect a yield of 90% or greater. We were somewhat surprised to find that our yield was closer to 65% after folding in reasonable parametric limits on threshold. Measurement of test resistors on the fabricated wafers showed an unusually large number of devices whose absolute resistance varied by 20% or larger from the average value on the wafer. We attributed this to a high defect density in the process. Although there was not an obvious circuit based way to eliminate this quality control problem we did adjust the number of wafers purchased to accomodate this relatively consistant low yield.
A second problem had to do with pickup between circuit blocks. Analog device models provided by the manufacturer did not account for capacitance across the insulator layer to the back substrate leading to an observable difference between calculated and measured impulse response when the input capacitance was not balanced between the two inputs. Figure 4 shows a measurement on the first ASDBLR prototype at the analog monitor with and without balanced capacitance on the inputs. Once these were observed it was a relatively simple matter to revise the models, symmetrize the pickup and eliminate the harmonics. Final production of 141, six inch wafers with 1017 usable die per wafer took place in the second half of 2003.

![Figure 4: Response at the Shaper monitor output of the first DMILL prototype ASDBLR indicated a potential for harmonic ring when the capacitance at the inputs was not balanced as in the lower of the two traces where the capacitance on one input was 22pF and 7pF on the other.](image)

1.5 ASDBLR Packaging

Geometric constraints of the TRT Barrel allow for only 30mm^2 surface normal to the direction of the wires for each channel and less than 2 cm in distance along the direction of the wires. This tight constraint forced a search for a small footprint package for both the ASDBLR and the DTMROC. A custom Fine Pitch (0.8 mm) Ball Grid Array (FPBGA), shown in Figure 5, was the most cost effective choice. Due to the relatively low lead count of the ASDBLR it was possible to depopulate part of the 0.8mm2 grid near the inputs and outputs to improve the signal path and ease of layout of the printed circuit board.

1.6 ASDBLR Testing

Packaged ASDBLRs were delivered from the packager in 208 position JEDEC trays with laser engraved, 2-D bar coded, serial numbers. All chips were tested at the University of Pennsylvania Chip Testing Facility - an 80 pin, 400 MHz, IMS MSTS chip tester fed by a custom adapted Exatron robotic chip handler which could handle 4 JEDEC trays at one load. Each chip was DC tested for power supply currents, input channel resistance, output switching and output switching current. In addition, each channel was parametrically characterized for 50% efficiency thresholds using a test pulse injection at values of 0; 3; 5; 30; and 50 fC and the results were written into a mySQL database. Chip testing required slightly more than 30 seconds per chip including robotic handling from the tray to the test socket and back. More than two thirds of the available chips were tested before the selection criteria were finalized.
to channel matching at 3 and 30 fC test pulse proved the largest hit on final yield numbers of slightly better than 50%. After good chips were identified from the database, the same Exatron robot sorted good chips into trays that were sent on to board assemblers.

1.7 Radiation Hardness

The ASDBLR relies on the characteristics of the DMILL NPN transistors, resistors and capacitors. The most sensitive parameter observed to change with radiation is the NPN transistor gain. Figure 6 shows the gain (Beta) of the DMILL process NPN transistors as a function of current density after exposure to $3.5 \times 10^{14} \text{n/cm}^2$, the calculated accumulated dose after 10 years of ATLAS operation at design luminosity. As indicated in the figure the gain of the input transistor (7µA/m) was measured to be only 23 after exposure. An improvement of a factor of 2 was observed after annealing the transistors at >100°C for 24 hrs, a condition that may better represent the very long term exposure the front end electronics will experience. See Ref [3] for more information.

Our radiation tests have shown that the ASDBLR is capable of withstanding the predicted 3.5×10^{14} (1MeV NIEL) neutrons/cm² and 7 Mrad ionizing radiation without substantial performance shifts, although it has also been shown that unexpectedly high levels of thermal neutrons, in addition to the projected higher energy neutron dose, would compromise the useful lifetime of the ASDBLR [3]. The ASDBLR threshold input gives a sensitive measurement of the change in npn transistor gain. The threshold goes directly to each of the 8 channels where it
Figure 6: Measured DMILL SOI transistor current gain as a function of current density connects to the base of a 4µm npn transistor on each channel. As shown in Figure 7, knowing the current in the collector allows us to calculate the current gain where Beta = Collector current/Base current.

The DMILL NPN transistors and the ASDBLR show very little sensitivity to ionizing radiation at the doses expected after 10 years of operation at LHC. Figure 8 shows the channel by channel threshold offsets before and after exposure to 7MRad of Co\(^{60}\).
Figure 7: Measured change in ASDBLR threshold current versus DTMROC DAC setting (one dac count = 5mV) after exposure to $3.5 \times 10^{14} n/cm^2$ 1MeV NIEL neutrons at Frances Prospero facility. Using the measured threshold current the worst case transistor gain was estimated to be 55 after exposure. These devices were annealed prior to measurement.

Figure 8: The plot above shows the measured ASDBLR threshold offsets before and after exposure to 7MRad of Gamma radiation. A small amount of broadening is evident in the distribution plotted with the solid line.
2 DTMROC

2.1 Introduction

The complementary digital readout chip for the TRT is the DTMROC (Drift Time Measurement/Read Out Chip). The initial prototype DTMROC [4] was produced in the same DMILL process as the ASDBLR but relatively low yields led to a redesign. The production chip [5] was implemented in a commercial 0.25 micron CMOS process and is designed to operate using the LHC 40 Mhz clock. A block diagram for the DTMROC is shown in figure 9. We outline the functionality below and then describe each block in detail. Finally we provide performance information.

Figure 9: Overall block diagram of the DTMROC chip.

The DTMROC accepts 16 ternary inputs from two ASDBLRs, the analog front end processing integrated circuit, described above. The ternary signal encodes time over threshold for the two separate discriminators on the ASDBLR. The low threshold signal is used for tracking and the DTMROC records it in 3.125 ns bins. The high level discriminator is sensitive to the
presence of a transition radiation signal and that output is latched as a single bit during each 25
ns clock cycle that it is active.

The DTMROC has five differential LVDS connections to the back end electronics - the 40
MHz clock (BX), Reset and Command In provide timing, reset and control input functionality
while Data Out and Command Out provide readout of the drift time data on the control data
respectively. BX, Reset, Command In, and Command Out are bussed to a group of DTMROC
chips. Each DTMROC has a private Data Out line to the back end electronics.

The DTMROC contains a programmable depth Level 1 pipeline to hold the front end data
until the first level trigger arrives. When a trigger arrives as a serial string on the Command
In line, the data (eight bits from the digitization of the low threshold input and a single bit
from the state of high threshold input) for three successive bunch crossings are transferred to a
derandomizing buffer. From the derandomizing buffer the data are serialized and sent off chip
over a low voltage differential signal (LVDS) twisted pair copper connection - Data Out. The
data are preceded by a header giving the contents of a 3 bit trigger counter and a 4 bit clock
counter. There is also a bit to indicate if the chip is in “sendid mode,” in which case it sends its
hardware address rather than the input data and a bit to indicate if any one of a number of error
conditions is true - a total of 10 header bits.

In addition to the main data path described above, the DTMROC Command Out port is used
for reading back the contents of downloaded registers and of status registers. In addition, the
Command Out port implements, an optional asynchronous wire-or output of the 16 low level
outputs of ternary receivers for use in self triggered running.

The DTMROC also contains four 8 bit Digital to Analog Converters (DACs) to set the low
and high thresholds on each of the two ASDBLRs to which the DTMROC is connected. There
are also a pair of one bit digital outputs that are used to control the shaper of the ASDBLR.

A testpulse generator with programmable amplitude and timing is provided for testing and
calibrating the ASDBLR. Four additional DACs and four comparators are available to measure
the temperature and Vdd (+2.5V) on the DTMROC die as well as Vcc (+3V) and Vee (-3V) for
the ASDBLR via two external connections. This array of DACs and comparators is referred to
as VT-sense (Voltage/Temperature-Sense).

A Command Decoder provides register read and write functionality and well as general
chip control and fast signal decoding. The Command Decoder receives commands over the
Command In line and transmits readback data over the Command Out line.

2.2 Analog Blocks

2.2.1 Ternary Receiver

The ASDBLR output is a constant-total-current, differential ternary signal (0, 1, and 2 — 2, 1,
and 0 units) where a signal unit is 200 +100 / -40 µA. This current is pulled from the DTMROC
Ternary Receiver inputs which sit at about +1.2 V and have an input impedance of about 200
Ohms. In this scheme, there is a constant return current flow through the negative ASDBLR
supply to the analog and then digital grounds and then the positive DTMROC supply. This non-
zero return current produces a small DC offset between analog and digital grounds but obviates
the need for a much more complex fully balanced output drive stage in the ASDBLR.

Table 2.2.1 gives the encoding function of the current.
Table 3: Encoding function of the current in units “U” of current that are sourced from the DTMROC inputs

<table>
<thead>
<tr>
<th>Amplified Signal in the ASDBLR</th>
<th>True Signal</th>
<th>Complementary Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>No signal above thresholds</td>
<td>2U</td>
<td>0</td>
</tr>
<tr>
<td>Signal between low and high thresholds</td>
<td>1U</td>
<td>1U</td>
</tr>
<tr>
<td>Signal above both thresholds</td>
<td>0</td>
<td>2U</td>
</tr>
</tbody>
</table>

The ternary receivers convert the encoded currents back into two separate digital waveforms. Under quiescent conditions (no ASDBLR pulse) there is 400μA leaving a TRUE input of the DTMROC. A pulse will be viewed as a rising voltage on the TRUE input.

The Ternary Receiver circuit is capable of accurately decoding tri-level differential current pulses as short as 4ns wide (at base). The circuit is based on differently ratioed differential current mirrors after the common gate current receiver. The use of ternary signals permits high-density communication between the ASDBLR and DTMROC chips without driving up pin-counts and without causing self-oscillations via large signal couplings back to amplifier inputs.

2.2.2 LVDS Interface

The interfaces to the back end electronics are all implemented as true LVDS differential signals. The BX, Reset and Command In input lines are received in standard high impedance differential receivers taken directly from the RAL library with a guaranteed sensitivity for signals of 25 mV differential or greater and minimum signal widths of about 5 ns.

The Data Out driver is a custom design based on standard LVDS topology with dual current sources driving an H bridge output. For the DTMROC Command Out driver to function on a multi-source Command Out bus it was necessary to include a tri-state function to turn off the current sources except when a particular chip was addressed. Given the need for the tri-state functionality, it was straightforward to include a secondary mode of operation for the Command Out driver where it can be used as a simple current drive into a distant summing node. By connecting the input of the Command Out driver to an OR of the 16 straw tracking signals, it is possible to treat the set of Command Outs on a given front end board as a single current sum so that a distant comparator can act as a multiplicity trigger on any minimum number of simultaneous ternary inputs. This allows self triggering for cosmic or source running and was used during some of the commissioning tests.

2.2.3 Digital to Analog Converters

Four dual, eight-bit Digital to Analog Converter (DAC) blocks are used in the DTMROC to provide a total of four ASDBLR thresholds, two temperature - voltage monitor reference voltages and two Test Pulse Output References. Each dual DAC creates two 8 bit reference voltages with a source impedance of 5 kOhms. Two 8 bit switch arrays steer ratioed currents from current mirror slave devices to provide an 8 bit current output into an internal 5K resistor. Current in the mirror master array is adjusted by an Opamp driver to provide an output voltage across an
internal resistor (10K) that matches the internal band gaps 1.25V reference. The output of each DAC is a voltage in the range of 0 to 1.25 V with a least significant bit step of about 5 mV.

Two of the dual DACs are used to program thresholds for the ASDBLR chips associated with the DTMROC - two tracking thresholds and two transition radiation thresholds. The remaining two dual DACs are used to control test pulse amplitudes and measure on-chip temperature and voltage and two external voltages as explained in the next sections.

2.2.4 Testpulse Generation

Each ASDBLR has two test inputs to couple an external test signal to an on-chip bus capacitively connected to each of four even or four odd ASDBLR preamp inputs. The DTMROC has a test pulse generator that provides a shaped signal to these ASDBLR test inputs. The DTMROC test signal is shaped as an integral of the expected point ionization signal in a TRT straw so that the differentiated signal at the ASDBLR preamp input closely follows the shape of a pulse from a Xe filled 4 mm straw.

Each test pulse generator is adjustable in amplitude (roughly 0 to 50 fC) and time (roughly 0 to 35 ns relative to the BX clock). A dual 8 bit DAC (see above) controls the amplitude of the Odd and Even test pulse outputs although only the top six bits of the DACs are connected to the control register. An external connection (TPbias) can be used to adjust the output range - the nominal 0-50 fC range requires a 9 kOhm resistor between TPbias and 0V. The time delay of both Odd and Even outputs is controlled relative to BX through a single 32 position delay line, addressable via a five bit register field. There are separate enable bits for the Odd and Even test pulse outputs to simplify program control of the various test pulse sequences.

2.2.5 Temperature and Voltage Sense

A simple measuring scheme is used to monitor on-chip temperature, Vdd voltage, and two off chip sense inputs. A monitored voltage is compared to a programmed DAC value by a dual low offset voltage comparator. The comparator output value is stored in the Common Status Register and can be enabled as an input to the Error Bit. The DAC voltage range is limited to 1.25 V so the power supply voltages are scaled down suitably.

Two on-chip comparators are fed from one DAC output. These two comparators are attached to an external input via an on-chip or an external divider and to an internal current source feeding a temperature sensing diode. Two additional comparators are fed from the a second DAC and compare that value to a second external voltage source and an internally divided copy of Vdd.

By sweeping the DAC setpoints it is possible to find the value of Vdd with a resolution of about 10 mV or the temperature with a resolution of about 2 degrees C given the 5 mV LSB of the DACs. By attaching the external voltage inputs of some DTMROCs on a board to the local ASDBLR Vcc or Vee power lines it is possible to monitor power supply and temperature values at each front end board. Because the comparator outputs can be set as an input to the error bit, by properly enabling the error flags it is possible to learn of significant power or temperature changes in a few tens of microseconds.
2.3 Timing

2.3.1 DLL

The Delay Locked Loop (DLL) used in the DTMROC is a standard design with eight delay stages made with current starved inverters feeding back via the last inverter to a common point where there is a comparison with the incoming 40 MHz LHC clock. The power rail for the starved inverters is then adjusted up or down depending upon the sign and magnitude of the phase error at the comparison point. This gives eight buffered clocks, BX0 to BX7 which are used to latch incoming straw data in 3.125 ns bins.

The DLL naturally produces a nearly perfect 50% duty cycle clock waveform and this may, under register control, be used as the clock signal throughout the DTMROC upon register selection. This, however, does not obviate the need for a stable 40 MHz external clock, it simply relaxes the duty cycle requirement on that clock.

As a diagnostic and monitoring tool, the DTMROC includes an eight bit latch for the BX0..BX7 signals that is updated each LHC clock cycle. A latch pattern showing a 50 ± 12.5% duty cycle results in a ”DLL locked” bit set in the Common Status Register.

The DLL can be reset via the command decoder or via the external Reset line or upon power up.

2.3.2 Latch

The asynchronous data from the ASDBLR ranges in duration from 5 ns to many 25 ns clock cycles. For the low threshold (tracking) signal, the asynchronous data can simply be latched continuously by the BX0..BX7 clocks producing an ongoing bit stream record with 3.125 ns resolution or about 1 ns RMS. Each clock cycle (eight 3.2125 bins) is then recorded as an eight bit record in the Level 1 Pipeline memory. However, the high level threshold, because it only needs to be recorded as one bit per clock cycle, requires a synchronizing latch sensitive to transitions as short as 5 ns. Any high state during a given clock cycle is then stored in the Level 1 Pipeline as a high for the next clock cycle. In addition, a special ”accumulate” mode has been implemented for this latch so that it does not reset each BX cycle as it would in normal data taking, but resets only upon external command. This is useful for chamber testing with radioactive sources or looking at average noise rates.

2.4 Digital Blocks

2.4.1 Pipeline

The Level 1 Pipeline is a logical FIFO block that stores the 9 bits (1 high threshold bit plus 8 time digitization bits of the low threshold) of latched data from each input channel, the current value of a 4 bit clock counter plus a 1 bit error flag from the DLL. This FIFO is designed to hold the front end data for the length of the Level 1 trigger latency.

The pipeline is implemented as two banks of 128 deep by 153 bit wide Random Access Memory (RAM) build out of 34 blocks of 128x9 bit memories. It operates as a continuously running circular buffer, updating the read and write pointers into the memory. Writes (and therefore reads) alternate between the two banks of RAM to minimize power consumption fluctuations that could occur on parallel access to all memory blocks.
2.4.2 Drandomizer

The Derandomizer is an additional buffer also acting as a FIFO built from the same synchronous
dual-port static RAM memory as the Pipeline, but with half the number of banks giving a storage
capacity of 128 words of 153 bits. Upon receipt of a L1A the current Pipeline output word and
the following two consecutive words are stored in the Derandomizer for readout. In addition
to these data, the SENDID status bit, the L1ID and the Common Error status bit are stored.
This gives 441 bits\(^1\) to be stored per event. The Derandomizer can store 42 events. In the
case of memory overflow control logic provides a full flag and skips complete events avoiding
synchronisation problems until the memory clears an event and is able to store a subsequent
event. The Derandomizer and Pipeline SRAM blocks are equipped with Build-In-Self-Test
(BIST) controlled via the Configuration register. The BIST result can be read out from the
General Status register.

2.4.3 Serializer

As soon as the Derandomizer is not empty data is placed serially on the DataOut line at a
40MHz bit rate. As the event size is constant a simple protocol is used with a 3 bit preamble
101 sent at the beginning of each event. When idle, the data output signal is 0.

2.4.4 Command Decoder

The command decoder block receives LVDS BX and a CommandIn signals from the TTC.
The command decoder examines the CommandIn stream bit by bit and issues all the neces-
sary timing signals (L1A,...), internal registers read/write strobes and data. As implemented the
decoding algorithm is very simple and is built from a shift register, a look-up table with valid
command codes and comparator logic. This architecture is, in this case, lower cost in power
and resources than a finite state machine. In order to insure that the circuit is robust against
single event upset additional logic was incorporated. The decoder for the critical ‘fast’ com-
mands (L1A, SoftReset and BunchCrossingReset) was triplicated for error correction as was the
command length counter. A surveillance counter was implemented to guarantee the RTL state
coverage and to release any access lasting longer then 171 clock cycles. Upon a read request
the command decoder serially transmits the contents of the selected register on the differential
CommandOut line, three clock cycles after the last bit of the command,. This CommandOut
line is common to multiple chips on a board and therefore has a ‘tri-state’ capability. A three
bit preamble (‘101’) is used for each data transmission and the idle state of this line is ‘HiZ’.
The chip address is defined by setting external pins.

2.4.5 Error Handling

The implemented protocol is based on the ABCD chip specification, which lacks any advanced
protection against transmission errors. The bit patterns are however chosen such that a single
bit error should not cause the acceptance of a wrong command. An erroneous bit pattern in the
middle of a command causes a flush of that unrecognized field and an attempt to decode the
following command.

\[24\]
2.5 Measured Performance

The preproduction fabrication of the design was fully successful and so the full production run of 48 wafers was done using the original masks which included lithography adjustments to simulate two “faster” and two “slower” (from 85% to 125% of nominal propagation time) variations about nominal process parameters. The DTMROC preproduction tests looked at logical performance, time linearity, DAC linearity, and performance over voltage and process variations. As shown in Figure [10], the time linearity is at the expected 1 ns level, differential and integral, not only at the nominal 2.5 V Vdd but down to at least 2.0 V. The basic logic of the chip such as the command decoder, was shown to work properly at over 100 MHz at 2.0 V, but the RAM blocks did show some degradation at elevated clock speeds, lowered process speed and lowered supply voltage as shown in Figure [11]. As noted above, the RAM blocks are tested with a built in self test routine as access through the DTMROC command structure is indirect and full coverage tests would be very time consuming.

Production tests of the chips, conducted at the University of Pennsylvania Integrated Circuit Test Facility concentrated on checking I_{dd}, exercising the built in memory self test, and then loading preset pulse patterns into the sixteen input channels and verifying proper time encoding within one LSB. The ternary receivers were checked for proper performance over their full range of amplitude and offset as were the LVDS I/O blocks. The DAC outputs and VT sense DACs were also exercised over their range and the test pulse output was checked at several values of amplitude and time delay. About 40,000 test vectors per chip were completed in about 30 seconds including robotic handling. All production chips were laser engraved with 2-D barcode serial numbers and test results were stored in a database. Chips passing all test criteria (about 85% yield) were pulled from the JEDEC trays and placed into final trays for the assembler by the same robot.

Figure 10: DTMROC’s time-measuring performance with the nominal, 2.5 V, and 2.0 V power supply. A 4.0 ns wide tracking pulse was injected at 100ps intervals across three full clock periods, 75ns in total. The picture shows the leading (red) and falling (blue) edges fit deviations and differential non-linearity as sampled by a single chip channel.
Figure 11: RAM access rate vs. Vdd and for various process variations. Note that for DTM-ROC production run, the slowest (125% on this plot) process variation was not packaged.

3 Board Designs

3.1 Introduction

Design of the front end boards, the detector grounding and shielding, and the power and signal connections to the outside world must be implemented very carefully to achieve optimal performance. For instance, the 30 to 70 cm long straw tubes in the TRT are within a small factor of being ideal 1/4 wave antennas tuned to the ASDBLR peak bandwidth of about 33 MHz. In addition, the ASDBLR inputs must be carefully isolated from the 40 MHz digital logic of the DTMROC.

The geometry and other constraints of the TRT End Cap [6] and Barrel [7] are very different so the designs of the End Cap and Barrel printed circuit boards need different optimizations. The basic schematic is, however, the same in each case - input protection (24Ω series resistor with a diode clamp to ground) at the detector and then ASDBLR, DTMROC, and power filtering on the front end boards. All signals in the system are differential except that the straw anode input is only matched pseudo-differentially by a trace carrying the ASDBLR dummy input as close to the detector as possible. The End Cap and Barrel printed circuit designs and justifications for the optimizations are discussed in detail below.

3.2 End Cap Boards

The End Cap straws are positioned radially and so while the straws nearly touch with a center to center distance of 5.2 mm on the inner radius of the TRT, the straw to straw center distance along the φ direction is 8.2 mm at the outer radius where the electronics are located. This allows almost 3/4 of a cm² per channel for the electronics located on the tread of the End Cap wheels. This location for the electronics, at the outer radius of the TRT up against the ATLAS solenoid cryostat, means that the radiation length of the electronics package is not as critical a concern as it is in the Barrel case where the electronics must be located at the end of the Barrel just before the End Cap. There is also, by design, sufficient room in r to allow separate, albeit close
packed, layers of printed circuit to handle the analog (ASDBLR) and digital (DTMROC) parts of the system.

3.2.1 ASDBLR Boards

There are two schematically identical but physically different designs for the ASDBLR boards shown in Figure 12 for the Type A and Type B End Cap Wheels since the Type B wheels are constructed with half the straw density in the Z direction. The Type A boards are about 60 mm square and serve 64 channels of detector (1/96 of a wheel in ϕ) with eight ASDBLR chips. The Type B boards are about 120 mm in the Z direction to match the wheels. Both types are four layer, 1.5 mm thick, through-via designs. Connection to the straw anodes and cathodes is made via miniature connectors to the End Cap Wheel WEBs, complex rigid flex printed circuits that serve to attach the electronics boards to the detector both physically and electrically [6]. The high voltage decoupling capacitors for the cathode connections and 24 Ohm input protection resistors are mounted on the WEB as are the HV protection fuses which also serve as blocking or isolating resistors to the HV supply.

![Figure 12: A Wheel (l) and B Wheel (r) ASDBLR boards top view showing the ASDBLR chips and the four multi-pin white connectors going to the Triplet Board. The semi-circular cutouts in the board edges are designed to clear plumbing and HV connections to the wheels.](image)

ASDBLR ternary outputs are sent to the DTMROC chips mounted on the Triplet Boards via four high compliance miniature connectors. ASDBLR control signals from the DTMROC and power for the ASDBLR chips also travel over these four connectors.

3.2.2 DTMROC Triplet Boards

The Triplet boards are identical for Type A and Type B wheels. One Triplet board serves three ASDBLR boards - 32 Triplet boards per End Cap Wheel. Each triplet board, shown in
Figure [13] has 12 DTMROC chips and is constructed as three separate four-layer through-via printed circuits joined by flexible jumpers. The jumpers allow flexibility so that the Triplet can follow the curve of the End Cap Wheels. An initial design effort using rigid flex technology demonstrated good performance, but was abandoned because of cost considerations and because the stiffness of the flex circuitry was too great to allow easy assembly on the wheels.

Figure 13: End Cap Triplet board showing the four DTMROC chips per segment with the power and data connector on the right. The four white jumpers between segments carry control and data signals and power and power returns. Note that the breakaway bars at top and bottom of the triplet are removed after testing.

3.2.3 Shielding

For the TRT End Cap, the Faraday shield around the straws is completed through the WEB structure on one side of the wheel up through the ASDBLR board and down the opposite WEB. The analog ground plane of the ASDBLR board acts not only as the cathode connection and reference for the ASDBLR input but also as a part of the Faraday shield. As a secondary shield, it was learned that completing the connection of the digital ground plane of the Triplet boards with a low impedance phosphor bronze clip between the edge plated segments of the Triplet boards provided additional cross talk protection from the digital logic on the Triplet. A full external Faraday shield constructed at the level of the TRT cable trays surrounds the detector and electronics.

Nice to have the cross section sketch of the end cap mechanics here.....

3.2.4 Power Distribution

Power is brought to the Triplet via the same 60 pin connector that also carries the four control lines and the 12 data output lines. The +2.5V power for the DTMROCs is filtered at the 60 pin connector, is returned via the digital ground plane on the triplet board, and is distributed only on the Triplet board. The ±3V power for the ASDBLRs is filtered to the analog return at the 60 pin connector and then distributed to the three ASDBLR boards. Analog and Digital power returns are commoned at the connector. Cooling is described in section 4.2.
3.3 Barrel Boards

The Barrel readout system must function in a much more constrained space and, in addition, there is a stringent radiation length limit as the boards must be situated in the middle of a tracking region. The board area per straw is also about a factor of two less than in the End Cap case. The mounting of the Barrel modules in the Barrel Support Structure (BSS) defines a set of triangular spaces shown in Figure 14 into which the electronics must fit in order to connect to the anode and cathodes brought out on the module tension plates.

Figure 14: End on view of the TRT Barrel during above ground testing at CERN before installation in the ATLAS detector hall. Each of the three types of modules (1, 2, and 3) is bisected by a member from the Barrel Support Structure. These six different triangular shapes define the geometry of the front end boards.

After exploring a number of possible design concepts that failed to meet all the design constraints, the collaboration settled on a single board mounting both ASDBLR and DTMROC chips as opposed to the two board solution used in the End Cap.

3.3.1 Design Constraints

The connectors designed into the Barrel Tension Plates (individual sockets for 0.5 mm pins arranged in groups of 16 anodes and 6 grounds) shown in Figure 15 are not suitable for simultaneous mass insertion as would be required by a triangular printed circuit board serving
from 10 to 27 of these 16 anode patterns. In addition, the areal electronics density required, especially in the smallest (Type 1) modules, is somewhat greater than practical. Therefore, an additional small board, the Protection Board, was added to the scheme to allow a transition from the 0.5 mm pin connectors to the high compliance miniature connectors used on the End Cap - this improves the mechanical compliance to allow, in the worst case, making 600 simultaneous connections and provides a small additional surface area to house the clamp diodes and input protection resistors for the ASDBLR inputs.

Figure 15: Crosssectional view of a barrel module tension and HV plate region. The Protection Board (labeled ‘Electronics Card’) is shown plugged into sockets in the tension plate. The active electronics plugs into and is parallel to the Protection Board.

Given the necessity of a Protection Board and given that the overall depth in Z available for Barrel electronics including cooling and connectors is about 1.5 cm, a single substrate printed circuit solution becomes almost inevitable. Because of the obvious mechanical difficulties in using a liquid cooled plate under the ASDBLRs, a set of two piece machined Al plates were designed to be attached to the outer or DTMROC side of the triangle boards - in that way the cooling connections could inhabit space reserved for other plumbing connections.

3.3.2 Design Rules

Although variations in geometry by end and by module layer require a total of 12 different board and cooling plate footprints, the design approach is the same for each. The basic rule is to separate the board into analog and digital domains splitting a total of 14 layers equally between them. Four levels of blind vias allow isolation of analog and digital signals within their separate domains. All fast signals are low level differential. Barrel boards are arranged in 16 channel ASIC triplets consisting of two eight channel ASDBLRs and one DTMROC. Analog connectors and ASDBLRs face inwards towards the barrel module. Two signal layers separated by an analog ground plane utilize short vias to isolate the inputs from the rest of the board. An empty layer below the input signal layers and a power layer with cutouts corresponding to the location of input signals minimize the capacitance to the other board layers. The analog side is
enclosed by a second analog ground plane with a power layer finally facing outwards towards the digital side. The layer stackup is shown in Figure 16.

Figure 16: Cross section of the printed circuit planes showing the digital and analog domains within the 14 layer stackup. Four different classes of blind vias, two for the digital and two for the analog domain are used for almost all connections except direct connections for ASDBLR outputs to the DTMROC and control signals from the DTMROC. Power is provided from a through hole connector. The edge plating noted on the left of the figure wipes the RF fingers on the Barrel Support Structure (BSS).

The DTMROC ASICS are placed on the outermost layer away from the barrel. Analog and digital grounds are completely separate but provision is made on the digital side to connect them using surface mount resistors placed around the perimeter of the triangular footprint. At these locations direct access to analog and digital ground is provided with large pads to allow low inductance connection from digital to analog ground and from analog ground to the conductive support structure of the barrel module. The support frame of the barrel module, the RF contacts (“fingers”) around the perimeter of each board, the analog layers of the board, and the inner and outer cylinders of the Barrel comprise a Faraday shield which surrounds the “analog zone” of the detector - the straws and the signal paths to the inputs of the ASDBLR. Special care is taken at the two sides of each module where HV connections to the cathodes are made via wide Kapton foils - the foils are notched every few centimeters and custom grounding clips bridge the gap between the RF fingers on the BSS and the edge plated analog board ground.

3.3.3 Barrel Printed Circuit Boards

The 12 final designs of the boards shown in Figure 17 are designated ARxyz (where AR is an historic reference to an Active Roof), x is the module number (1-3), y is Front or Back corresponding to C or A sides of ATLAS, and z is Large or Small triangle of the pair (the smaller triangle has its base at smaller R). Front and Back boards are not mirror images of each other as the Tension Plate designs reflect a translation, not a mirror operation from end to end in
the modules - this forces twelve distinct printed circuit designs. General characteristics of these
designs are listed in Table 4.

<table>
<thead>
<tr>
<th>Board</th>
<th>No. DTMROCs</th>
<th>No. Clk Groups</th>
<th>No. Power Connects</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR1F(B)S</td>
<td>10</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>AR1F(B)L</td>
<td>11</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>AR2F(B)S</td>
<td>15</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>AR2F(B)L</td>
<td>18</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>AR3F(B)S</td>
<td>23</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>AR3F(B)L</td>
<td>27</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Figure 17: The photograph above shows a module 3 barrel board (two power and Clock Groups) with one through hole and one pig-tailed power connector and two data connectors. The DTM-ROC FBGA chips can be seen on the top of this board.

3.3.4 Power Distribution

While the End Cap uses a single connector for power and data, that connector is much too large for use in the Barrel case. All AR boards have separate power and data connectors. The data connectors are 60 pin surface mount versions of the high compliance connectors used to connect to the Protection Boards and the power connectors are 6 pin industrial style through hole connectors. As seen in Figure 17 some of the power connections were implemented as
pig-tails to ease routing of the power connections through the plumbing. Unlike the End Cap case where electrical connections were made to the boards before plumbing connections and shielding were completed, the Barrel cabling was installed after the full plumbing manifold system was in place. Cooling is described in section 4.2.

3.4 Testing Program

All TRT front end boards were assembled by industrial printed circuit assemblers and then shipped to Neils Bohr Institute for visual inspection, burn in and testing. Each board was run on a current and voltage monitored stand at elevated temperature for one week or more prior to detailed testing. Boards failing the initial tests were repaired either at NBI or sent to the University of Pennsylvania for diagnosis and repair. Tested boards were then sent to CERN, retested in the surface assembly building, mounted on the detector, and then tested again. Results of the on-detector tests are covered in section 14.2.
4 Cooling and Cabling

4.1 Cabling

The organization of the cabling in the inner detector of a collider experiment (the innermost part of the tracking system) is always a logistical and engineering struggle for compromise between low mass and minimal volume versus high quality signal and services transmission. The following paragraphs describe briefly the solutions deployed.

The cabling of the TRT has been split into two separate parts in the two different regions of the detector - Front End to Patch Panel (Type II cables in ATLAS nomenclature) and then Patch Panel to USA15 (Type III cables) [9]. The regions differ in their environmental design constraints. The detector contains the following types of cable:

- Signal cables serving for the data transmission, read-out, timing and temperature sensing.
- High Voltage cables to bias the detecting elements
- Low voltage power cables to supply the FE electronics and auxiliary electronics on Patch Panels
- Control cables for several functions exercised on the Patch Panels

4.1.1 Detector to Patch Panels

For the innermost part - Front End to Patch Panel - the main design constraints are mass and volume. The connection between the Front-End electronics on the detector and the Patch Panels routes all the services and data through the very limited space between the TRT and the cryostat wall - a region shared in phi with the SCT Silicon Tracker services. These ‘Type II’ cables terminate at the TRT Patch Panels (see section 5). The Type II cables were produced as prefabricated bundles customized for each part of the detector. For each function, the cable was chosen for minimum possible diameter usually governed by the insulator thickness. For power cables high quality Kapton (polyimide) insulation was a primary choice. There are three types of cables used in this section of cabling:

- Read-out, control, monitoring (temperature) cables - individually shielded twisted pairs, tin plated copper conductor, 0.13 mm conductor diameter (36AWG), 4 drain wires Ag plated copper, wrapped aluminum polyester foil as shield, 0.95 mm overall diameter.
- miniature HV cables - 2 kV mini-coaxial cable, 0.16 mm conductor diameter, tin plated Ag/Cu alloy, Aluminum/Polyester foil (shield), 2 drain wires Ag plated copper.
- low voltage shielded cables procured in triplets or doublets according to the voltage sets carried on them.
 - Analog wheel type A - 3 conductors 1.0\text{mm}^2, extra flexible tinned copper insulated in MULRAD, 0.12 mm tinned copper braid with a 85 \% min coverage, kapton insulated, OD 4.6 ±0.3\text{mm}
- Analog wheel type B and barrel - 3 conductors 0.6 mm\(^2\) (37 strands of 0.15 mm)
 extra flexible tinned copper insulated in MULRAD, 0.12 mm tinned copper braid with a 85% min coverage, kapton insulated, OD 4.0 ± 0.2 mm

- Digital - 2 conductors 1.0 mm\(^2\), extra flexible tinned copper insulated in MULRAD, 0.12 mm tinned copper braid with a 85% min coverage, kapton insulated, OD 4.3 ± 0.2 mm

In both the end cap and barrel cases, the HV cables were fabricated as separate bundles for each ϕ sector of the detector. For the end cap, low voltage power cables are bundled at the detector end with the data and control twisted pairs since a common connector is used for both types of connections (as shown in Figure 18). However, in the barrel case, the low voltage and data-control lines are bundled separately. The data and control lines are such a fine gauge that connection had to be made via hand soldering in all cases - about 360,000 manual soldering operations. At the detector side the data and control twisted pairs go to a common connector, but at the Patch Panel end the data cables go to Data Patch Panels while the control lines go to the TTC Patch Panels. Thus the bundles, even if of only one type of wire, are of a fairly complex one connector to two connectors form. For the Type II cables, there are 736 complex harnesses (some 2,800 separate bundles of different types of wire, multiple connectors, and multiple lengths). The LV cables for the barrel used crimped and soldered connections at each end, the End Cap LV cables were soldered to an adapter board on the detector end but used the same crimp connection as the barrel power cables on the Patch Panel end. HV cables used commercial crimped multi-way connectors at the Patch Panel ends and were soldered and custom strain relieved into three way commercial connectors at the end cap or into custom fuse boxes at the barrel end.

Figure 18: Partially assembled End Cap showing two full cable trays at the top and one empty cable tray at the bottom. Each tray carries cables for 1/32nd of the detector and acts as part of the outer Faraday cage of the detector. The blue cables are the 36 AWG data and control shielded twisted pairs, the heavier orange-brown cables are low voltage. The light colored HV cables are just barely visible in the upper tray on the left. In this view the triplet boards serving the A type Wheel nearest the interaction point are on the left and the PPF1 connectors are just out of the picture on the right.

All cables were thoroughly tested for continuity and against shorts on custom built cable test jigs at the bundle assembly site. In addition, the HV cables were subjected to HV leakage
tests. Each cable bundle was labeled for its intended position in the detector as cable lengths depended in detail upon the route from the detector face, across the cryostat flange, and through the tile calorimeter fingers and first layer of muon chambers to the Patch Panel boxes.

The bundled cabling (of all types for a given ϕ section) was placed into cable trays at CERN, retested, and, as an assembly, mounted either on the cryostat wall (barrel part) or on the mechanical structure of the detector (endcap part). The barrel cables run in one piece from the detector up to the patch panel area. The endcap cables have been split at the cryostat flange where the Patch Panel Front 1 (PPF1) has been located, allowing easier and separate installation of two cable lengths. On average, the Type II cables are 12 m long.

4.1.2 Patch Panels to Control room

From the PP2 location on there is enough space to use standard cables for all functions. The data from thirty DTMROCs are merged at PP2 into a single 1.2 Gb/s opto-fiber. The temperatures of the NTC board level thermistors and RTD detector and manifold mounted sensors are measured on the TTC patch panel boards and those cables also stop at PP2. Only timing/control cables and bulk HV and LV cables are installed to connect PP2 with control room and the bulk LV power supplies on the HS structure. The average length of these Type III and Type IV cables is around 75 m with longest 102 m. The PP2 crates (see section 5) contain boards where many DCS control and monitoring operations are performed. The communication between those cards and the control room is performed via a standard industrial bus - CAN bus. This adds CAN bus cables to the inventory (NG18P, 9-pair shielded cable, 120 ohm). The PP2 crates also contain the low voltage regulators and their control (see section 13) and monitoring. The ‘bulk’ power lines which deliver LV to PP2 are simple multi-strand copper cables of 35 and 50 mm2. The signals controlling the data patch panels (where the data signals from the front-end boards are converted from electrical to optical) are carried down via standard Ethernet-style CAT5 shielded cables. The timing (TTC) system uses following cable:

- 25 twisted pairs round shielded/jacketed discrete wire cable, made of 28 AWG tinned stranded copper core, overall Al/polyester foil and tinned copper braid, halogen free, flame retardant, 110 ohm balanced impedance, color coded.

At the PP2 position the HV cables also change their type via a simple passive disconnect. From the PP2 up to the power supplies in the control room following cable is used:

- 3 kV DC, round overall shielded/jacketed 56 discrete coaxial cables, made of 0.12mm2 [AWG26] tinned stranded copper core, overall tinned copper braid (shield), halogen free, flame retardant

4.2 Cooling

The heat generated in the Front End and Patch Panel electronics and the heat lost in the LV power cables must be removed from the cryostat and muon system areas in order to keep the TRT and the rest of the Inner Detector at reasonable operating temperatures and to avoid local hot spots within the muon tracking system that would distort the geometry of that system. The overall ATLAS requirement is that each subsystem within the cavern be thermally neutral. This need for thermal neutrality implies the need for an efficient cooling system. The space
constraints imposed by the detector geometry dictate a liquid cooling system. A monophase system relying only on the heat capacity of the fluid has been shown to be sufficient for the needs of the TRT.

4.2.1 Power Dissipation - Front End

The design values for the cooling system load are the following: Power dissipation in the front-end electronics ~ 60 mW per channel (40 mW ASDBLR and 20 mW DTMROC) or about 320 mW/chip for ASDBLR, and 320 mW/chip for the DTMROC. This gives a total Front End power dissipation in the range of 25 kW. In addition, power loss in the cables running from the PP2 regulators to the Front End is an additional 4 kW.

4.2.2 Power dissipation Patch Panels

The PP2 crates contain three LV distributor boards which dissipate about 60 W each per crate. For safety reasons the PP2 crates are closed with front/back panels and there is no air convection which might remove the heat. Thus it is necessary to remove the heat via liquid cooling. The PP2 LV cabling running from the power supplies on the HS platforms outside the ATLAS detector has been routed in between high precision muon chambers which need to be kept at a constant temperature. So this stretch of the LV cables has also to be cooled.

4.2.3 Design and deployment

For all aforementioned tasks the simple monophase cooling system has been chosen. The idea is simply to circulate through properly sub-divided and configured pipe-work a liquid under sufficient pressure and with adequate mass flow which will remove the heat from the cooled elements. The liquid has to have a number of special properties: to be radiation hard i.e. not decompose under ionizing radiation or create aggressive compounds which might endanger the integrity of piping and the liquid and it should be a good insulator, a dielectric. Due to the inaccessibility of the detector electronics, a limited leak developing during lifetime of experiment must not be allowed to cause collateral damage through leakage currents or short circuits - a requirement that excludes water, despite its excellent heat capacity. After series of radiation tests a fluorinert, C_6F_{14}, has been selected.

The cooling station of the design shown in Figure [19] has been constructed with the capacity of 70 kW. It supplies four distribution racks where the main flow is manifolded to barrel and endcap detectors via 34/rack output lines and 50/rack return lines. A similar cooling station provides cooling for the PP2 boxes and the Type III and Type IV cables. The system operates at 6 bars with a settable supply liquid temperature 15-17 degC. The value of the pressure is high enough to cope with the dynamic drop in the piping as well as the hydrostatic conditions in a big and voluminous system. Operating temperature has to be maintained well above the dew point in the experimental cavern.

The cooling elements in the barrel detector are ‘cooling plates’ made of aluminum thermally attached to the electronics boards via a thermally conductive RTV adhesive and supplied with liquid medium via manifolding pipework running over the BSS face. Each 1/32 in Phi of the barrel is a separate cooling loop.
The endcaps electronics is cooled via a logically similar solution with a very different mechanical design. Here a thermally conductive rubber mat is used as thermal connector between ASDBLR boards and aluminum plates and SS pipes that carry the fluid. There are two cooling loops per end cap wheel each covering 180 degrees in Phi, but with entrance and exit points rotated in Phi for each Wheel to distribute the cooling inlet and outlet pipes around the end cap support structure [6].

At PP2 each board is bolted to a 2 mm thick Al cooling plate with heat transfer conductive rubber between the cooling plate and the high dissipation components. This cooling plate is then thermally clamped to the PP2 Box top and bottom plates via expansion clamps. The top and bottom plates of the PP2 boxes have embedded Cu tubing carrying the cooling liquid for that Box. At each PP2 location, the PP2 Boxes are connected to a local input and output manifold.

The cooling of the cables is realized by routing in LV cable bundles along side the return pipes cooling the electronics. Cabling between PP2 and periphery of the ATLAS is cooled by a separate network of piping common to several inner detectors. This network is driven by second cooling station of identical design to TRT front electronics one.

The system has proven, during system tests, capable of keeping all barrel Front End Board components under 40 degrees and in the end cap case, keeping even the worst case Triplet board components, cooled only via conduction through the connectors, under 45 degrees.
Part II

Patch Panels

5 Introduction

The TRT (and Pixel) Patch Panels (formally, Patch Panel 2, abbreviated PP2) are located just outside the first layer of Muon Barrel chambers in 64 different crates (one crate per 1/32 per end) on five different platforms on both the A and C sides of ATLAS in as shown in Figure 20. These locations were chosen as being the accessible during a short shutdown but as close to the Inner Detector as possible in order to reduce dispersion and signal loss in data cables and voltage drop in the low voltage power cables. All the TRT electrical services are either repeated or at least disconnectable, in the case of the High Voltage, at these Patch Panels. Treatment of the TTC signals, and Data Signals is described in the sections below - the HV "patch panel" is simply a set of multiconductor connector pairs located at the Patch Panel location and is not further described.

The TRT Low Voltage DC power is subject to a final level of regulation, control, and monitoring at the Patch Panels using custom ST radiation tolerant linear regulators for both the front end electronics ±3V and +2.5V requirements and the PP2 located logic for TTC and ROD. The Low Voltage regulator PP2 boards are described in detail in the Low Voltage power section (13), but it is worth noting that these boards dissipate most of the power at the PP2 location and dominates the cooling requirements of the PP2 crates.

Figure 20: ATLAS Patch Panel 2 locations.

The data and control signals that go between the Front End Boards and Backend Modules
are all received and repeated at the Patch Panel boards. There are two to four TTC style patch panels associated with each TTC, two ROD style patch panels associated with each ROD, and one power patch panel (see above) that fans out and regulates the low voltages for the Front End boards. Each PP2 location houses between 5 and 8 Patch Panel boxes, each of which contains all the patch panels which are associated with 1/32nd of one side of the detector. Each box houses 8 Patch Panels in total; 3 for 1/32nd of one side of the barrel (1 power, 1 ROD, 1 TTC), and 5 for 1/32nd of one endcap (2 power, 1 TTC, 2 ROD). All 8 boards in one box share common cooling, power and CAN bus.

Because of the differences in readout granularity and cabling between the Barrel and the Endcaps, a single patch panel design could not be used for both barrel and endcap parts of the detector. As a result, the Patch Panels have been implemented using a modular design consisting of an active part which contains all the functionality and a passive part which handles the routing of signals to and from the Front End boards. This avoids the need for two separate designs which would have complicated not only the design and production, but also the testing and installation processes. The specifics of each board design will be described in the following sections.

6 TRT-TTC Patch Panels

6.1 Overview and Functionality

The primary function of the TTC Patch Panel is to receive and repeat signals between the TTC and the Front End boards. In addition to this, the board also serves the temperature sensors needed for monitoring the detector. 20 TTC lines, each consisting of one group of Clock, Command In, Command Out, and Reset signals, are handled by this board. The Command In and Command Out signals are received and repeated directly, with some shaping in the inputs and outputs (discussed below). The Clock and Reset signals, on the other hand, arrive once for every 10 lines, and are fanned out on the patch panel to each of the Front End boards. In addition to being fanned out, the Clock signal can also be independently delayed for each line (after the fan-out) in increments of 0.5ns. Finally, the TTC patch panel is responsible for driving temperature read-out of the detector and front-end boards, which is accomplished by means of an ELMB [10] which is mounted on the patch panel. These functions will each be discussed in more detail in this section.

6.1.1 I/O compensation and filtering

All of the signals entering and exiting the TTC patch panel are LVDS traveling over small copper twisted pair wire. As mentioned in the cabling section, the signals going to and coming from the TTC travel over 60-100m of 28 AWG copper twisted pair, while the signals going to and coming from the front end boards travel over 10-14m of 36 AWG shielded twisted pair. The shaping that is applied to each input or output depends on the cable type, as well as the particulars of the signal; these different approaches will be described below.

There are two different filters that are used for signals coming onto the TTC patch panel board. The Command-In and Reset signals coming from the TTC, as well as the command-out signals coming in from the Front End boards are received with a passive 11 component differential RLC filter. This filter has been shown to recover good signal performance for signals
traveling up to 100 meters over 28 AWG twisted pair wire. The BX Clock signals coming from the TTC are received with an active equalization circuit that can be tuned for cable lengths between 60 and 90 meters in steps of 10 meters by moving a simple jumper. This active equalization is implemented with a commercially available IC and provides a lower jitter and better signal quality than the passive filters used for the other signals. This step was taken for the clock in particular because a well-shaped, reliable clock edge is imperative to the proper performance of the drift time measurement in this detector.

For the outputs as well, two different approaches are taken. The signals going out over the 36AWG stp wire towards the Front End boards (BX Clock, Reset, Command in) are shaped with a 3 component passive RL pre-compensation to ensure good signal shape when they are received on the Front End boards. The signals going out of the TTC patch panel towards the TTC (Command Out only) have no pre-compensation, but instead the LVDS drivers have been doubled (with the second driver capacitively coupled) to provide the extra drive needed to traverse the 100m cables. The compensation in this case is handled on the TTC board itself with an active equalization similar to the one described above for the Clock on the patch panel.

6.1.2 Clock Fine Delay

Aside from receiving and repeating signals, the TTC patch panel also houses a few important functionalities for detector control and monitoring. One of these functions is the fine delay of the clock which is supplied to the front end boards. This delay is used to compensate for differences in cable length, as well as particle flight time, so that the rising edge of the clock is synchronous with the earliest arrival of particles at every part of the detector. Because the clock is fanned out to the front-end board on the TTC Patch Panel, the fine delay of the clock has to be implemented at the patch panel level. This functionality is implemented using the CERN-developed Delay25 chip, which can provide from 0 to 25ns of delay for any signal in 0.5ns steps. The Delay25 chip [11] has 5 delay channels and is controlled by an I2C interface. The I2C interface in this case is driven from the TTC board using spare lines in the same 50-pair cable that carries the Front-end control signals.

6.1.3 Temperature Read-out

Another function that is hosted on the TRT-TTC patch panel is temperature readout for the detector and Front-End boards. NTC and PT1000 sensors mounted on the Front End boards and the detector are connected to the patch panel board via shielded twisted pair wires that run along with the Front End control lines in the Type 2 cables. These are read out by means of an ELMB [10] which is mounted on the Patch Panel board. The core functionality of the ELMB is a multiplexed radiation tolerant ADC, and it is used extensively in ATLAS for DCS and monitoring purposes. The ELMB communicates with the host computer via CAN bus (automotive industry standard) carrying the data over CANOpen protocol. The total temperature readout capacity that has been implemented on the TTC patch panel is 28 NTC sensors and 36 PT1000 sensors. A reference voltage is applied to all of the sensors and the ELMB monitors the mid-point of a voltage divider, with the sensor acting as one half and a reference resistor on the patch panel as the other. The digital part of the ELMB along with the CAN control are supplied from the CAN bus and are isolated from the rest of the patch panel by optocouplers internal to the ELMB. The analog part of the ELMB is supplied from the same input voltage that supplies
the patch panel, rather than the CAN bus, so the analog part of the ELMB has the same ground potential as the patch panel. There is an external connector on the patch panel which makes the NTC temperature sensor voltages seen by the ELMB available externally as well. This is used by the temperature interlock system which is discussed in section 8.3.2 of this paper.

7 TRT-ROD Patch Panel

The patch panel associated with the TRT ROD receives data over copper from a set of Front-end boards and passing it along to a ROD over optical fibers. Up to 120 40MHz LVDS signals come in from the Front End boards over 36AWG shielded twisted pair copper wire, and the data is sent out to the ROD via four 1.6 Gbit optical links. The data are serialized by the CERN-developed GOL (Gigabit Optical Link) chip, before being driven over each optical link to the ROD.

7.1 Inputs and Outputs

The inputs to the ROD patch panel from the Front End boards consist of up to 120 LVDS signals (one per DTMROC) coming in over 10-14m of 36AWG shielded twisted pair wire. These signals are shaped with a passive 11 component differential RLC filter that provides near optimal cable compensation, and are then latched by a comparator before being sent to the GOL. Data from up to 30 of the digital inputs are concatenated into and serialized onto a single 1.2 Gb/s optical link, then sent from the patch panel area to the ROD in the USA15 counting area. Each of these links is driven by a laser diode, which is itself driven by the CERN designed GOL serializer chip. In addition to the data path, there is a set of 2 ethernet cables running between the ROD and the ROD patch panel which deliver a clock for the GOL chips, as well as inhibit and I2C control signals for all the chips on the board. The clock and control signals are received by an active equalization circuit, with the expected cable length tunable in steps of 10m by a jumper on the board.

7.2 Concatenation and Serialization

The concatenation and serialization stage on the TRT ROD patch panel is achieved by using the GOL (Gigabit Optical Link) chip, which was developed by the CERN microelectronics group [12] specifically for high radiation LHC applications. The goal of the chip was to allow serialized transmission of data at 800MHz or 1.6GHz over copper wire or optical fiber. Depending on the operating mode, the chip accepts up to 16 or 32 simultaneous 40MHz inputs with the output being chosen dependent on the type of transmission line that will be used. In addition to the GOL chip itself, there is a set of custom chips provided by the CERN Microelectronics group [13] that go along with the GOL to insure its proper functionality. These are the CRT4T for power switching (required for proper GOL startup due to a bug which can cause the chip to lock up if power is not applied in a precise order), a custom rad-hard QPLL, tuned to LHC frequencies for stabilizing the clock, and the Delay25 chip for setting a proper phase of the GOL control clock with respect to the incoming data. All of these chips are controlled through an I2C interface which is driven by the ROD board.
8 Interlocks, Controls and DCS

8.1 Overview of architecture of the DCS

The TRT Detector Control System (DCS) controls, monitors and supervises operation of the TRT and related apparatus. The main DCS design aims are:

- parameters monitoring, loading, logging and setting
- receiving commands from the central DCS system
- issuing commands for certain actions - mostly operational
- correlating parameters from different parts of the detector
- collaborating with the DAQ system via the ‘Run_control’ layer
- supervising the safety of the detector
- triggering alarms, emergency procedures etc

The status of all components should always be available and user intervention should be possible where/when allowed. As the DCS of the TRT is a part of the overall ATLAS DCS, it will accept general ATLAS commands and return the summary status of the TRT subsystem to the central ATLAS DCS. Additionally, the DCS was designed to supply a user interface to allow autonomous operation during the construction, testing, commissioning and calibration of the TRT detector. To facilitate the overall integration and operation of the central DCS this interface should be identical to the one used by central operator, with variations only as required for the specifics of the TRT detector.

8.1.1 Components

The TRT detector control system consists of the following subsystems.

1. Detector temperature measurement system
2. Gas systems
 (a) Active gas delivery and control
 (b) Gas Gain Stabilisation System (GGSS)
3. Power supply systems
 (a) LV system for the TRT detector
 (b) HV system for the TRT detector
4. Cooling systems
 (a) Gas cooling of endcap detectors and barrel ventilation
5. Infrastructure
 (a) VME racks
 (b) Can bus power supply system

6. Interlock system

7. Connection to centrally monitored systems
 (a) Racks
 (b) Environment in the experimental areas
 (c) LHC

Figure 21 shows the DCS global architecture, assignment of the control computers, and connections to the infrastructure and ATLAS DC system.

The system is designed to use as much as possible commercial and industrial standards in both the hardware and software layers. Such an approach facilitates the design and construction phase and later allows for reasonably easy maintenance, servicing, and upgrading during the planned long lifetime of the experiment. Another tool which helps the designers of the system is the so called FrameWork released by CERN IT department containing templates and skeletons for popular and widely used equipment which greatly eases the integration process.
8.2 Tools and methods

8.2.1 PVSS

PVSS II [14] is a SCADA system. SCADA stands for Supervisory Control And Data Acquisition. PVSS is used to connect to hardware (or software) devices, acquire the data they produce and use that data for task supervision, i.e. to monitor device behaviour and to initialize, configure and operate those devices. In order to do this PVSS provides the following main components and tools:

A run time database where the data coming from the devices is stored, and can be accessed for processing, visualization, and other purposes.

Archiving Data in the run-time database can be archived for long term storage, and retrieved later by user interfaces or other processes.

Alarm Generation and Handling Alarms can be generated by defining conditions applying to new data arriving in PVSS. The alarms are stored in an alarm database and can be selectively displayed by an Alarm display. Alarms can also be filtered summarized, etc.

A Graphical Editor (GEDI/NG) Allowing users to design and implement their own user interfaces (panels).

A Scripting Language Allows users to interact with the data stored in the database, either from a user interface or from a background process. PVSS scripts are called CTRL (read control) scripts and follow the C syntax and include many SCADA-specific functions.

A Graphical Parameterization tool (PARA) Allowing users to:

- Define the structure of the database
- Define which data should be archived
- Define which data, if any, coming from a device should generate alarms
- etc.

Drivers Providing the connection between PVSS and hardware or software devices to be supervised. Common drivers that are provided with PVSS are OPC, ProfiBus, CanBus, Modbus TCP/IP and Applicom. A DIM driver is provided as part of the Framework.

PVSS has a highly distributed architecture. A PVSS application is composed of several processes, in PVSS nomenclature: Managers. These Managers communicate via a PVSS-specific protocol over TCP/IP. Managers subscribe to data and this is then only sent on change by the Event Manager, which is the heart of the system shown in Figure 22.

The Event Manager (EVM) is responsible for all communications. It receives data from Drivers (D) and sends it to the Database Manager to be stored in the database. However, it
maintains the process image in memory, i.e. the current value of all the data. It also ensures the distribution of data to all Managers which have subscribed to this data. The DataBase Manager (DBM) provides the interface to the (run-time) data base. User Interface Managers (UIM) can get device data from the database, or send data to the database to be sent to the devices, they can also request to keep an open connection to the database and be informed (for example to update the screen) when new data arrives from a device. There is a UI for Linux and a Native Vision (NV) for Windows. The UIM can also be run in a development mode; PARA for parameterization of DPTs/DPs, GEDI for the Graphical Editor (GEDI for Linux and NG for Windows). Ctrl Managers (Ctrl) provide for any data processing as background processes, by running a scripting language. This language is like C with extensions.

API Managers (API) Allow users to write their own programs in C++ using a PVSS API (Application Programming Interface) to access the data in the database. Drivers (D) Provide the interface to the devices to be controlled. These can be PVSS provided drivers like Profibus, OPC, etc. these will be described later in more detail, or user-made drivers. Archive Managers Allows users to archive data for later retrieval and viewing. A project, which is the name for a PVSS application, may have one or more Archive Managers and one can configure which data is stored in which manage.

8.2.2 Finite State Machine methodology

We have built a system where the system behaviour is described in terms of objects and the states of this objects. Such an approach is very useful since it abstracts the problem away from details of the system and underlying hardware allowing for clear definition of logical states of system parts. An additional parameter describing system health (quality qualifier) is a Status object associated with every State. Each granule of the system can be seen from outside as an object - an entity with certain behaviour and characteristics. An object can be in one of its allowed states which can be set (by changing or forcing) either by command or spontaneously.
The meaning of states with the same name can be different depending on the object definition. The Status object describes different quality factors of a given state. Some combinations are obviously excluded (ex. READY state with FATAL status). The set of commands used in the system should be hierarchical and adapted to the level of access. Some commands are restricted to certain category of user (password protected). Each command calls for certain actions, which should at lowest level reach the smallest addressed granules (objects) of the system. Not all commands change the object state e.g. those changing parameters or reading status.

As an example we show in Figure 23 the HV system states which easily can be mapped on any of the objects of which TRT detector is composed. It is clear that some objects will not attain certain states due to theirs internal nature. Some of the states are mandatory i.e. every object has to be in one of this states; others are optional i.e. depending on the characteristics and nature the object can be in one of this states.

Figure 23: The TRT High Voltage system state machine.

The control hierarchy of the objects is build up of the control units, logic units and device units. The first two have very similar properties except the lack of a stand-alone operation mode for logic units. The device units represent direct connection to the hardware and need to be
very carefully designed since have to reflect all possible behaviour of the apparatus. Whenever a parent in hierarchy receives a transition command it sends it to all the children in its branch. Any child propagate the command and so on throughout the system. A parent (at any level of the hierarchy) confirms the transition only when all the children have confirmed the new state, so any errors while performing a state change are effectively propagated to the root node.

8.3 Detector Safety

8.3.1 DCS protections

The DC system monitors all slowly changing parameters which have any influence on the detector performance. However there is one parameter which apart from effect mentioned above is showing detector safety. Big concentration of modern, very dense FE electronics in confined volume puts stringent criteria on the cooling system. The unexpected and uncontrolled rise of the temperature of electronics or detector mechanics can lead to severe even disastrous consequences possibly even to detector damage. The DC system implements limits on the all of measured temperature values. There are 2 separate limit values: Warning set at 2-4 degs above normal working temperature which serves as a signal to operator that something wrong is happening. Another one Alarm set 7-10degs above working temperature causes cut of the low voltage to the affected detector/electronics part. All the incidents are as well treated accordingly by FSM system and central DCS alarm screen. Similar philosophy is applied to the power supply voltages and currents. In case of the surpassing of alarm value the pertinent channel is switched off.

8.3.2 TRT Hardware Interlock

Backup protection against overheating of the TRT front-end electronics, beyond that provided by the DCS, is guaranteed by the TRT Hardware Interlock (TRT-HWI). This system of custom electronics monitors temperatures on the front-end boards read out using Negative Temperature Coefficient Thermistors (NTC), which also form inputs to the DCS system. If a specified number of NTCs register temperatures above pre-determined thresholds for a user-adjustable period of time, then the system will switch off the Low Voltage (and also High Voltage, if desired) to the entire TRT. In addition, auxiliary inputs to the TRT-HWI are also provided to allow other conditions (for example, the proposed DCS watchdog status) to cut power to the TRT. The TRT-HWI is designed to be as fail-safe as possible: using no programmable logic or remotely setable parameters, while only being monitored, not controlled, by the DCS.

A block diagram of the major elements of the TRT-HWI is shown in Fig. 24. The system itself is comprised of two elements:

1. **Comparator Boards**, sitting on the PP2 boxes in UX15, which compare NTC outputs in 1/32 of each end of the detector to pre-determined thresholds and send out current approximately proportional to the number of NTCs over threshold in the barrel and the endcap.

2. **the Logic Box**, located in USA15, which is itself composed of two elements: **Receiver Boards** that receive all of the outputs of the Comparator Boards for the A and C sides of the detector, and “count” Comparator Boards with more than a specified number of NTCs.
over threshold; and an Alarm Board that uses the “counts” from each Receiver Board, as well as auxiliary inputs to generate a KILL signal based on a simple algorithm.

The TRT-HWI KILL signal is sent to the LV and HV control racks in USA15, disabling their outputs and thus switching off power to the entire TRT. The system is designed such that a failure in any component – NTC, cable, board – will contribute to (in the case of a single NTC failure) or produce a KILL signal.

![Block diagram of the TRT-HWI system.](image)

Comparator Boards Each of the 64 Comparator Board receives input from a total of 28 NTCs mounted on TRT front-end electronics boards: eight from the barrel and 20 from the endcaps. These NTC signals are routed to the Comparator Boards from the TTC PP2 boards where they are passively split off from the main TTC DCS path. On the Comparator Boards, the output signal from the NTCs is compared to thresholds using rad-tolerant comparators (LM339). The input to the comparators from the NTCs is pulled down to ground, so that both shorted and disconnected NTCs appear, to the comparator, to be in a high-temperature state, thus potentially causing a KILL signal to be generated.

Thresholds for all barrel and endcap NTC comparators can be set independently using two socketed resistors on the Comparator Board. This scheme allows the thresholds to be adjusted if conditions change, but prevents them from being set remotely to incorrect values. The state of each comparator (above or below threshold) is indicated by an LED.

The output of all eight barrel comparators and all 20 endcap comparators are summed separately to form the two primary board outputs: BR_SUM and EC_SUM. These sums contain a small current offset to allow disconnected cables to be detected at the Logic Box.

If a given NTC is known to be bad, its comparator output can be individually removed from the sum (disabled) using a set of switches mounted on the board.

The BR_SUM and EC_SUM outputs can be used in two ways, although both methods will not be used simultaneously.
1. They can be sent to the Logic Box for use in constructing the global KILL signal.

2. They can be sent, via another set of comparators, to disable inputs on the PP2 Maraton power supplies switching off LV power to the front-end boards controlled by the PP2 in question (LOCAL_KILL).

Output to the Logic Box is accomplished differentially using two wire pairs each (for BR_SUM and EC_SUM) on ~100 m ethernet-style cables. The alternate LOCAL_KILL signal, which is used during commissioning, is generated by two other comparators, the threshold for each of which can be set using socketed resistors. Two LOCAL_KILL signals (for barrel and end-cap) are sent out through LEMO connectors. The end-cap signal is split with a simple “T” to accommodate the two end-cap LV boards in a PP2 crate.

The Comparator Boards, which are implemented on 3” × 5”, four layer PCBs, are collected at each PP2 location into mechanical housings, which can hold five or eight boards. This housing is screwed onto the side of the PP2 structure. The Comparator Boards receive power, via a daisy-chain connector, from the same LV supply used to power the PP2 TTCs.

The Logic Box After traveling from UX15 to USA15, Comparator Board output signals are received by instrumentation amps on one of two Receiver Boards that are part of the Logic Box: one dealing with signals from side A and one for side C. After reception each Comparator Board output sum serves as input to two comparators: one which detects whether the cable from that Comparator Board is disconnected and another that compares the signal to a multiplicity threshold, set separately, by socketed resistors, for barrel and endcap sums. The results of the two comparators for each Comparator Board input are summed to give two output signals, BR_MULT_SUM and EC_MULT_SUM corresponding to the number of Comparator Boards in the barrel and end-cap that have more NTCs over threshold than that specified by the multiplicity threshold.

Individual Comparator Board inputs can be excluded from this sum (disabled) using switches on the Receiver Board. Because this action would leave a significant portion of the electronics unprotected, several levels of monitoring have been added to the Receiver Boards including LED visual indicators and independent monitoring by DCS to ensure that disabled boards do not go unnoticed.

The BR_MULT_SUM and EC_MULT_SUM signals from each Receiver Board are daisy chained (effectively summing them from each board) and sent by a short ribbon cable to the Alarm Board, where they are compared against barrel and end-cap board-count thresholds, again set by socketed resistors. If any of the barrel, end-cap, or auxiliary inputs are over their respective thresholds, then an ALARM condition is generated. To reduce sensitivity to transient noise in the system, this ALARM condition is only translated into the KILL signal if it persists for a specified period of time (set by an RC circuit, and currently ~45 s). The KILL signal activates a relay, which produces the signal to turn off power to the TRT, via a cable to the LV (and possibly HV) racks in USA15.

Critical voltages and signals (the various SUM, ALARM, KILL, DISABLED, etc.) are monitored by a set of five ELMBs. One ELMB monitors the Alarm Board states and settings and for each side, A and C, of the detector two ELMBs monitor the ,SUM voltages and disabled states of the 32 sectors. A PVSS panel integrated into the DCS framework monitors and logs all abnormal conditions.
In order to be able to bring the TRT up after a power failure or a trip, it is necessary to temporarily disable the TRT-HWI. This can be accomplished by two means. First (and normally) a push-button disable is provided on the front of the Alarm Board. When pressed, this disables the KILL output signal for approximately five minutes, after which time the signal is automatically re-enabled and can again cause TRT power to be cut. For those occasions when a longer period of inactivity is desired, a “hidden” switch is also provided that disables KILL until it is put back into its enabled position.
Part III
Back End Electronics, DAQ and Power

9 Timing, Trigger, Control (TTC)

9.1 Introduction

The ATLAS timing, trigger and control signals (LHC Bunch Clock [BC], level-1 accept trigger signal [L1A], synchronisation signals [Bunch and event counter resets, BCR and ECR], tests and calibration pulses, resets, etc.) are distributed by the RD12 [15] optical TTC system. In the inner tracker, this system is used up to the level of the read-out drivers (ROD) where a protocol change is done, allowing to minimise the required functionality at the front-end level to its strict minimum. The protocol conversion is done in the TRT-TTC module [16] housed in the ROD crates. This module interfaces the backbone TTC system to:

- The RODs in providing them with the BC, the L1A, the event identifier, the bunch crossing identifier, the BCR (Bunch Counter Reset) and the trigger-type word;
- The front-end electronics read-out chips (DTMROC) in providing them with the Hard-reset signal and in an encoded way the timing trigger and control signals. This module also receives commands via VME bus, and triggers via the VME bus, the TTC optical link and the module front panel.

9.2 Position of TRT-TTC in the TRT Detector

9.2.1 Context

An overview of the TRT read-out system is shown in Fig. 25. The TRT on-detector active electronics consists of front-end boards composed of the ASDBLR and DTMROC custom chipset. The chips are arranged on detector mounted printed circuit boards in modular groups of 10 to 18 DTMROCs depending upon the particular geometry of each region of the TRT detector. Each group (or board) is then linked via twisted pair cables to the off-detector electronics.

The on-detector electronics are joined to the off-detector electronics via a Patch Panel which repeats the LVDS signals and provides trigger and control signals connectivity to the TRT-TTCs via 50-pair twisted pair cables that run approximately 100m. The optical fibers are used for bringing the data to the ROD module.

The off-detector electronics is comprised of the Timing and Trigger Control (TRT-TTC) module, the Readout Driver (ROD) and the Readout Buffer (ROB). The readout system provides timing and control signals to the front end with timing information distributed to a precision of 0.5 nsec. The system must be partitionable such that subsets of the electronics can provide data acquisition needs during fabrication of the detector modules and such that different portions of the TRT or Inner Detector can operate autonomously during the commissioning and debugging phase of the experiment. To satisfy these requirements, the off-detector readout and control system is a modular, VME-crate based solution. Groups of TTC and ROD modules are
Figure 25: The TRT back end electronics block diagram showing the TTC and ROD modules in a back end crate connected to front end and readout blocks.

placed in VME crate together with a Single Board Computer (SBC) and module able to introduce dead-time in case of ROD buffers overflow (BUSY module). The four TTC partitions of the TRT (Barrel A and C, End-cap A and C) are driven from one TTC crate providing trigger, timing and control signals. Each partition contains a Local Trigger Processor (LTP), a TTCvi, a TTCex and a TTCoc [6],[7] for generating TTC protocol and sending signals over optical link down to the TRT-TTC.

9.2.2 TTC segmentation

The TTC signals are sent to geographical zones of the detector. Such zones are multiples of 1/32 of an 8-plane wheel in the end-cap region and 1/32 of a module in the barrel. (a zone is defined by an active roof board).

Barrel For the Barrel, one TRT-TTC communicates with the front-end boards of 4 modules of each type (M1, M2 and M3). As each (M1+M2+M3) is 1/32nd of the Barrel, one TRT-TTC covers 4/32nd of the barrel.
End-cap For the end-caps, one TRT-TTC communicates with the front-end boards of 2/32nd of each wheel A and each wheel B of one side of the detector.

9.3 TRT-TTC Interfaces and Functionality

This module is used to implement TTC [6] and TRT specific command functions and parameter loading for front-end electronics. It receives one encoded TTC signal over an optical line from the TTC modules [7] and a TTCrx chip [8] decodes this signal. It extracts the Bunch Clock (BC), the Level-1 Accept Trigger, the Bunch Counter Reset (BCR) and the Event Counter Reset (ECR) commands and receives trigger type information. Through the custom lines it downloads parameters to the front-end electronics. There are 40 TTC links arranged on 4 connectors served by the module in total. It distributes the clock and commands both to the front-end electronics and the ROD modules. All lines to the front-end electronics have adjustable delay. For test beam and system tests purposes it can receive commands from the front panel (NIM). For dead time monitoring purposes it measures the duration of the BUSY signals generated by the S-LINK and the on-board buffers control. A combined BUSY signal is sent to the Central Trigger Processor through a BUSY module [7].

9.3.1 Modes of operation

TTC module provides number of different modes for writing and reading back parameters and status to and from the front-end. The basic one is the direct access from VME bus which is adequate for system test. For downloading all parameters to the detector this mode would be too slow, so a so-called INIT mode is implemented. Upon receiving this command, TTC
module writes all parameters to the front-end on all TTC links simultaneously; parameters are stored in the board memory. Optionally, in this mode the board can read-back the parameters and compare them with expected values.

During data taking, it is expected that some register content on front-end electronics would be corrupted due to the radiation effects (single event upsets). The TTC module provides either a polling mode for checking the content of all registers or a refreshing mode for periodical refresh of all registers. For these modes, the LHC beam structure is used.

The beam gaps assigned to TRT detector are used for accessing TTC links which must be otherwise free for sending triggers and TTC commands.

DTMROC chips could be switched to Fast OR mode for cosmic trigger purposes. In this mode, TTC modules receives Fast OR signals on parameter read-back lines and forms a trigger using a simple on-board logic. For a more complicated trigger building it further propagates Fast OR lines to VME P2 connector where a dedicated extension module can be plugged.

9.3.2 Interfaces

Vme interface The TRT-TTC06 module is a 9U VME64x board, using J1, J2 and J3 connectors. Except the standard predefined pins, the user pins of J2 connectors are dedicated to the ‘FAST-OR’ signals described in the ‘modes of operation’ section. The J3 connector is fully dedicated to the communication between TRT-TTC and its two RODs. 32 bits of address and 32 bits of data are used to communicate with the VME crate processor. This interface allows the communication with the front-end boards (a change of protocol is done inside the board), reading of the status registers of the module and transmission of fake signals for calibration or system test.

TTC interface The TRT-TTC06 board is equipped with a photodiode and a TTCrx (Timing, Trigger and Control signal decoder), configurable via the VME bus (converted to I2C protocol by the Board manager). It decodes incoming TTC signal and delivers the Bunch Clock, Level1 Accept Trigger, Bunch Clock Reset, Event Counter Reset, data and commands (trigger type and eventually TestPulse if this command can be sent by the LTP) to be transmitted to the front-end.
boards and to the ROD modules.

Frontend interface The front-end electronics (and in particular the DTMROC chips) need to receive the following information from the TRT-TTC06 module: Bunch Clock, Level-1 Accept Trigger, Event Counter Reset and Bunch Counter Reset, Test Pulses for calibration purpose, Hard Reset, and, of course, the parameters to configure the chips registers values. These signals and values are transmitted with a protocol defined by the DTMROC chips, and which is composed of four lines (command, read-back, clock and hard reset). Forty front-end boards (housing each up to 16 DTMROC chips) can independently communicate with one TRT-TTC06. The clock and hard-reset lines (broadcast) are shared between ten front-end boards, before being split in the intermediate front-panel. However, each front-end board has its own dedicated command and read-back lines. The TRT-TTC06 controls as well I2C interfaces to remotely finely adjust in the TTC patch-panel the Bunch Clock phase for each front-end board.

The communication to the front-end boards is done through four cables which can be of various lengths up to 100m. This requires a complete set of timing and transmission adjustments. In addition to the Bunch Clock remote phase adjustment (by 0.5ns steps), the duty cycle of Bunch Clock signal can also be changed, as well as its polarity. Another local fine adjustment of the Bunch Clock phase per ten front-end boards is also provided. Each command line can also be finely phase-shifted, and the read-back lines can be shifted in four steps of 6ns each. Of course, in term of timing adjustment for data alignment purpose, the trigger and reset signals can be delayed by a multiple number of Bunch Clocks periods. This adjustments are done independently for each front-end board.

ROD interface The TRT-TTC06 board communicates with its two adjacent ROD boards, via the J3 connector of the VME backplane. It transmits the trigger and synchronization related signals (Bunch Clock Reset and Event Clock Reset are transmitted, as well as, for every Level1 Accept trigger, its corresponding trigger ID, Trigger Type, and Bunch Clock ID). It receives from the two RODs the BUSY signals to be retransmitted to the Central Trigger Processor via a lemo cable connected on the front panel.

9.4 Integration in the system and performance

The functionality of all interfaces was tested first in lab conditions using prototypes of Patch Panels and ROD module and frontend boards from 1/32 of endcap. Small system was setup in ATLAS pit and run with DAQ. Several programs were written for performing delay scans with the system, for checking functionality of the module in situ, etc. It was shown that TRT-TTC module is providing required functionality, mostly with modest L1A speeds, but also with full rate of L1A approaching 100kHz.

10 Readout Drivers (ROD)

10.1 Introduction

The TRT Readout Drivers (RODs) are the data processors of the TRT Data Acquisition system. A ROD connects to the front-end electronics via data patch panels, to TTCs for triggers and
clocks, to the Level 2 Readout Systems and to VME-based readout single board computers, as shown in Fig. 1. The main function of the ROD is to receive data from the front-end boards via the data patch panel (see Sec. 7), check the validity of the data, compress the data, format and build the data into mini event fragments and output the event to the Readout System (ROS). In addition, the RODs allow sampling of the events via VME-base single board computers (SBCs) for in-crate monitoring. The RODs also send clock and control information to the data patch panels, receive trigger information from local TTCs (see Sec. 9) and assert busy when the readout system cannot accept any more data.

The TRT DAQ contains 96 RODs in total, 32 for the TRT Barrel (16 per end), each handling 2/32 of one end of the detector, and 64 for the Endcaps, with each ROD serving 1/32 of an endcap unit.

Each ROD is connected to two identical patch panels, and much of the ROD is divided into two logical sections, one for each data source. The ROD interfaces to each patch panel via 4 1.6 GHz optical transceivers and two Cat5 ethernet cables containing clock and control information, for a total of 8 optical links and 4 ethernet cables per ROD.

The ROD is a 16 layer, 9Ux400mm deep single-width VME-based board. All external interfaces are located on the front panel. Most of the ROD functionality is implemented within 5 Xilinx FPGAs. An XC3S400 Spartan 3 FPGA handles the VME-bus protocol and translates it to a simple local bus for communication with the other FPGAs on board. A second XC3S400 implements the interface with the TTC, and handles other miscellaneous tasks. A Virtex II Pro XC2VP7 is responsible for decoding the 8 optical input data streams, providing test data for checking the data processing and interfacing to the output SLINK daughtercards. Finally, two Virtex 4 XC4VLX40 chips each handle one half of the data processing (one for each data patch panel connected), control the data buffering and compression, check for errors and build the data into formatted event fragments.

10.2 ROD-TTC communication

Each TTC communicates to two RODs via a custom J3 backplane. The timing, trigger and busy signals are sent and received from each ROD using dedicated point-to-point connections (see Sec. 9). The ROD receives the LHC clock from the TTC, which is then passed through the on-board QPLL to reduce jitter. Upon receipt of a Level 1 trigger accept (L1A), the TTC sends the ROD the L1A signal, L1 identification counter (L1ID), Buch crossing identifier (BCID) and Trigger Type via a 16-bit data bus. These signals are used to ensure each subdetector’s data is synchronized with the rest of the detector, and to check each front-end chip is reading out the correct bunch crossing’s data. If the Level 2 Readout system asserts busy via the SLINK (see below), the ROD asserts BUSY to the TTC which alerts the trigger system to suppress further triggers. In addition, the ROD can assert a separate BUSY if it needs to halt triggers for internal reasons.

10.3 ROD-Patch Panel communication

Each ROD is connected to two independent data patch panels that service up to 120 front-end DTMROC chips. The data from 30 DTMROCs are concentrated onto one optical fiber, resulting in 4 fibers per patch panel, each carrying 1.2 Gbits/s of data. This data is latched and 8b/10b
encoded by 4 GOL [12] chips operating at 40 MHz, so the actual frequency of each fiber is 1.6 GHz. The GOLs require low-jitter clocks, and each group of 30 data lines has slightly different timing. To maximize the system stability, the ROD transmits the phase-locked 40MHz LHC clock via one of the Cat5 ethernet cables to the patch panel. Each ethernet cable has 4 twisted pairs of wire for carrying signals. The clock from the ROD is passed through a 4-channel Delay25 chip on the patch panel, allowing each optical link to have an individual phase adjustment of its clock for maximum timing headroom. The configuration of the GOL and Delay25 chips on the patch panel is implemented via an I²C interface carried on the ethernet cables. In addition, voltage inhibits for power sequencing, a patch-panel reset signal and an optical IDLE pattern enable are also transmitted over the cables.

The patch panel logic is implemented within the Spartan 3 FPGA that also handles the TTC interface.

10.4 Data Flow

Each data patch panel reads out data from either 120 (Endcaps) or 104 (Barrel) DTMROCs, so each ROD handles either 240 or 208 inputs. In either case the RODs are identical – 32 channels are simply unused when operating in Barrel mode. Each DTMROC transmits 12 bits of header information and the data from 16 straws, at 25ns/bit, meaning each ROD handles the data from up to 3840 straws.

The data from the 8 optical inputs is received using Finisar FTRJ8519 transceivers and passed to a single Xilinx Virtex II Pro which has 8 RocketIO blocks. Each RocketIO block can independently align, decode and perform a serial to parallel conversion on its data stream. After deserialization, data from each patch panel is split and sent to one of two Virtex 4 FPGAs for further processing.

The Virtex 4 FPGAs must first extract the header information from each of the 120 data streams from the front-end DTMROCs, and further deserialize the following 16 straw’s data into 16 27-bit wide words. At this point the data is stored into DRAM for buffering, as the time taken to compress this data varies from event to event depending on its complexity.

The DRAM consists of 4 16-bit wide 256Mbit DDR (dual data rate) memory modules with a maximum frequency of 200 MHz organized into a 64-bit wide bus. Raw data is written two 27-bit words at a time. The controller is implemented in the Virtex 4 FPGA, with read and write scheduling optimized to minimize latency penalties due to mode switching, while ensuring priority for data writes when needed. As the data is read/written on both the rising and falling clock edges, the bandwidth in/out of the memory buffer is 800M 27-bit words/sec, less the time spent in refresh cycles. Since each ROD half must process approximately 200M straw words/sec at the maximum Level 1 trigger rate, this leaves ample headroom.

After retrieval of the event data from DRAM, the header information is checked against the L1ID and BCID received from the TTC to ensure data synchronization across the detector. Errors, channels without data, etc, are flagged and built into an error block which is appended onto the event data during the event building phase. The data words are first sent to the compression engine described below before being passed to the event builder.

Once the full event fragment, with header, data block and error block has been assembled, it is sent back to the Virtex II Pro chip which contains the code to interface to the SLINK readout into the L2 Readout System (ROS). There are two SLINKs daughtercards on board (one for each
half-ROD’s data) that can each transmit at 160 MBytes/s via a duplex optical fiber. The ROS can inhibit data output by asserting Link Full, in which case the ROD stops sending data and asserts BUSY to the TTC module. Data flow is immediately resumed once the ROS deasserts Link Full. In addition, a fraction of the events may be stored into DRAM as “spy” data, which can be readout on demand over VME to the Single board computer in the crate for monitoring.

10.5 Compression

The data from each of the 350k straws is read out from the DTMROCs on every Level 1 trigger, at a rate of up to 100kHz. Each straw’s data consists of 27 bits (see Sec. 2.4), for a total of 1 Tbit/s of data. This is beyond the bandwidth of the subsequent parts of the DAQ system, as well as the storage system, and so a data compression/zero suppression scheme must be implemented. By studying the “entropy” of the data, i.e. the actual information content of our digitized data, we found that a completely lossless compression scheme is possible, and fits well within the available bandwidth of the DAQ chain. Since the entropy of the data stream varies logarithmically with the complexity of the data, there is only modest growth in the data volume from low to high luminosity conditions, and one compression works scheme for both. This compression also allows us to monitor the detector performance via VME-based readout at a higher rate than otherwise would be possible.

The entropy-based compression scheme is implemented as a Huffman encoding of the data. While each straw’s data is a 27-bit pattern, the actual number of bit patterns that actually occur is a very small fraction of the total number of 2^{27} possible patterns. Ideally, one expects the tracking data from each straw to be quite simple. For example, the data is all zeros if there was no particle crossing the straw, and no noise pickup. Since the per-straw occupancy varies from a few percent at low LHC luminosity to approximately 50% at high-luminosity in the inner regions, this is the most common pattern. If a particle did intersect the straw, the data bits are zero for the time-slices before the closest ionization reaches the sense wire. Once the charge does reach the sense wire, the signal goes above threshold and the data bits are 1 until the farthest ionization (at the straw wall) reaches the sense wire, after which the data bits are again 0 (see Sec. 2). In practice many more complicated patterns are present (approximately 100,000 in total), though the least likely may only occur at a rate of less than 1 in 10^8. These bit patterns of data are ordered by their likelihood of occurring, and assigned a variable-length encoding based on this ranking. Very likely patterns get short encodings, and rare patterns get longer ones. The Huffman encoding algorithm generates the table of these encodings in a way that results in an output data stream that is very close to the theoretical minimum length to losslessly transmit the data.

The implementation of this scheme at the high rates needed (200 M lookups/s) uses an IDT75K62100, a specialized Network Search Engine (NSE) ASIC that was developed for internet routers. Two of these chips, operating with custom firmware in the ROD’s Virtex 4 FPGAs, allow for deadtimeless, lossless compression of the TRT data that approaches the theoretical limit.

The NSE is programmed via VME with the 128k most common 27-bit data patterns. A parallel 128k deep SRAM is loaded with the encoding for each pattern as well as the code length. In operation, the 27-bit data pattern from a straw channel is presented to the NSE, which searches for the table address holding the data pattern. This address is used as a lookup
into the SRAM which then drives the encoding and code length for this data pattern. The variable-length code is read by the Virtex 4 chip, then packed into 32-bit words and passed to the event-builder subblock. Patterns not in the encoding table (typically very anomalous patterns that are not possible under normal behaviour of the front-end electronics) are given a fixed prefix code followed by the full 27-bit data, or optionally mapped to preset codes marking data patterns that are unusable for physics.

10.6 Self-test features

The ROD is designed so that almost all its functionality can be tested with minimal external equipment. The ROD contains a QPLL and oscillator that can function as a standalone LHC clock source for the board. The TTC interface chip can mimic Level 1 triggers in various modes. The Virtex II Pro, through which the data flows, contains firmware that can inject known test data into the system in various ways. The Virtex II can generate standard data patterns, or trigger an on-board fifo to transmit custom data, such as data that reflects actual TRT detector data, which is loaded via VME. This data can bypass the RocketIO deserializers and test the functionality of the board’s data processing. In addition, the RocketIO blocks have the ability to serialize and transmit data in addition to receiving it. The data can then be sent out the optical transmitters on board, looped back to the receivers, deserialized and checked for bit errors.

Using these features, a VME system with a single-board computer and dedicated software can test most of the ROD functionality without extensive front-end mockups.

11 Data Acquisition

The primary function of the TRT data acquisition system (DAQ) is the collection of data from front-end electronics at a maximum trigger rate of 100 kHz. To this end, it is composed of hardware and software components which form an interface between TRT-specific electronics and the ATLAS trigger and data-acquisition system. In addition to the collection of physics data, the DAQ is also part of a calibration system designed to exercise the full functionality of the front- and back-end electronics. Finally, the DAQ provides the ability to monitor the detector on a variety of levels, from basic temperature and voltage sensing to real-time calibrations of noise rates and efficiencies.

11.1 ATLAS Trigger and DAQ Framework

The ATLAS trigger is a three-tiered system, designed to reduce the incoming event rate of 40 MHz to a sustainable output rate of 200 Hz. The first layer is hardware based, followed by two software based layers that perform region-of-interest based analyses. In the first layer, only calorimetry and parts of the muon system are used to make the Level 1 decision. The inner tracker information, including that of the TRT, is first used in the High Level Trigger (Levels 2 and 3), along with the information from the calorimeters and the full muon spectrometer.

To transmit essential signals, such as the beam clock, triggers, and reset signals, a series of trigger modules have been developed by the collaboration. At the top level is the Central Trigger Processor, which makes the Level 1 decision using information from the calorimeters, the muon trigger system, and the busy signals supplied by the subsystems. The CTP passes information
to the Local Trigger Processors, which are responsible for a single partition. (There are four partitions for the TRT, and 36 for the whole of ATLAS.) The LTP information is passed to an optical encoder, which transmits the signals to the subsystem-specific hardware.

The ATLAS experiment has created a data acquisition framework to facilitate the integration of the different subsystems. The system is a C++ based Finite State Machine, and uses a combination of gigabit ethernet and fiberoptic connections to join the different parts of the experiment. Each subsystem is required to maintain their own dedicated hardware, and to supply a collection of libraries which guide the hardware through the state transitions before, during, and following a physics or calibration run.

As the interface between the ATLAS DAQ and the TRT, the TRT DAQ has the responsibility of receiving the Level 1 trigger decisions, processing those triggers, and returning the corresponding data buffers to the High Level Triggers with minimal latency.

11.2 TRT Scope and Configuration

The TRT is composed of over 250,000 straws, ranging in length from 50cm (endcap) to 150cm (barrel). The analog readout is performed by a custom-designed ASIC which performs amplification, shaping, discrimination, and base-line restoration (ASDBLR - section 1). These analog results are sampled by a second ASIC, the DTMROC (see section 2), which makes the time measurement of the signals and provides a digitized result to off-detector electronics for up to 16 straw channels.

Control of the DTMROCs is supplied by the TRT TTC (see section 9) each of which manages up to 480 DTMROCs. The readout of the DTMROCs is performed by the TRT RODs (see section 10). Both the TTCs and the RODs are single-width 9U VME64x modules, the entire collection of which fill 10 VME crates for the whole detector (96 RODs and 48 TTCs). Each VME crate is controlled by a single board computer running a customized Linux operating system.

For each piece of configurable hardware (DTMROC, TTC, ROD) a software library has been created. The libraries are implemented in C/C++, and provide access to all of the functionality of the hardware. These libraries are used on the single board computers, and interface with a VME driver (and the associated API) to communicate with the hardware.

The configuration parameters for all of the electronics are stored in a database, and the specific parameters used in a given run are archived for future reference. The “Configuration Database” uses an Oracle back-end, which the DAQ accesses via OKS (Object Kernel Source). This is an ATLAS-specific interface which represents the hardware configuration as a completely relational database.

11.3 Readout Scheme

11.3.1 Physics Data

When a Level 1 Accept is sent out by the ATLAS Central Trigger Processor, one of the four TRT Local Trigger Processors receives a copy of this signal. This LTP then passes the trigger on to the next LTP, as well as to the ROD crates for which it is responsible.

At the ROD crate, each of the TTCs will receive a copy of the trigger, and pass this trigger on to the front-end electronics. Any delays necessary to compensate for trigger latency or front-end
pipeline depth will be made in the TTC.

The DTMROC at the front-end, upon receipt of the L1A, will proceed to transmit its straw data from a pre-determined place in its pipeline. Those data will then travel over small-twisted-pair wires to a series of patch panels, which receive the electrical signals and transmit them, fiberoptically, to the RODs in the ROD-crates.

The ROD then organizes the straw data for up to 120 DTMROCs into a single buffer, and packages those data with: the event, run, and ROD identifiers; any error conditions detected in the DTMROC data; and markers to indicate the beginning and end of the event. Those data are then sent to local, rack-mounted computers via the S-Link protocol [17], where they will be available for the High Level Trigger farms, and for collection into complete ATLAS events.

In high-rate conditions, the ROD will also perform on-board compression of the straw data before packaging. The compression scheme is a lossless, entropy based Huffman encoding, which has been designed to reduce the event size by a factor of 4 at a luminosity of \(10^{34}\) (which becomes a factor of 16 at low luminosities). Without compression, the size of a single event for the entire TRT is 380 kB.

11.3.2 Calibration Data

A principle design challenge for the TRT was the creation of high-speed, low-noise front-end electronics. While these goals were met in the design phase, a thorough calibration of operating thresholds and straw efficiencies must be made on a routine basis in order to maintain optimal noise performance. Several tools have been developed to perform these calibrations. Some are suited to detailed testing, as described in section 14. To test and calibrate the full detector, a collection of tools has been created within the data acquisition framework.

The calibration data is acquired in the same way as the physics data, though more supervision is required. A run consists of a scan over some number of points in configuration space. To control the event rate, and to ensure adequate statistics for a given test, the trigger electronics are controlled directly to provide a specific number of triggers per scan point. The DTMROC event data, once collected by the RODs, is packaged with the necessary information to reconstruct the configuration at the time of that event. The ROD data is then collected by a dedicated computer, which either stores the data for later processing, or processes the data in real time.

11.3.3 Monitoring

Monitoring the activity and health of the detector is an important task which has been integrated with the data acquisition system. In addition to monitoring changes in detector performance, the DAQ also watches environmental conditions such as chip temperature and low voltage levels on the front end electronics, which complements the monitoring done by the Detector Controls group (see section 8.1).

11.3.4 ATLAS Tools and the TRT Viewer

At the ATLAS level, there are several tools available to the subsystems to help with detector monitoring. One of which is an event display, which incorporates all of the subsystems into a single, intuitive interface. This tool, called Atlantis, is designed to show event-level data in an easy to navigate format, with a variety of different projections available for all systems. This
interface is quite nice on an event level, but in order to see detailed information about detector performance over an entire run, another collection of tools must be used. This suite, called AthenaPT, is similar in nature to the ATLAS level-3 trigger, and is capable of performing full reconstruction for all subsystems. It can be run in real time, sampling complete events from the DAQ event builder and storing the results into ROOT-based histograms for future analysis.

At the TRT level, a special tool has been developed that combines the event display capabilities of Atlantis with the detector performance monitoring of AthenaPT. The TRTViewer extracts the TRT information from the raw data and provides both a real-time event display and an analysis package that does track reconstruction, efficiency calculations, noise occupancy maps, and error monitoring. This tool will also provide an interface to the configurations database, and will have the ability to re-calibrate detector thresholds and timing based on information extracted from the monitoring process.

11.3.5 Voltages and Temperatures

The on-detector ASICs were designed with the ability to report their temperature and operating voltages, which are then monitored for changes over time. The temperature or voltage can be found by searching for the threshold over which the DTMROC reports an error for the quantity being measured. Similarly, crossing the threshold from the other direction causes the error condition to disappear.

As temperatures and voltages tend to behave consistently among chips that share a common low voltage connection, pairs of adjacent chips are used to bracket a common threshold over which the error condition appears. One chip will be set above threshold, and its neighbor will be set below the same threshold. If either chip changes state, the change will be registered for both chips, and a new threshold will be set. The error conditions are recorded during the beam gaps using the polling mechanism in the TRT-TTCs, which allow one to request the read-back of a DTMROC register at some future time when there will be no triggers (i.e. the beam orbit).

12 High Voltage Power

12.1 Requirements

The High Voltage power supply system has to deliver 1.5 to 2 kV to each straw. It is based on a multichannel HV power supply from HVSys [18] and one HV channel delivers power to several straws (up to 192). In order to avoid the loss of a large fraction of the detector in case of a problem on one straw (e.g in case of a short between a wire and the straw), each group of 8 straws is individually protected with a fuse at the level of the detector (on the WEB for the end-cap and through fuse boxes in the barrel). The total number of HV channels for the end-cap and the barrel is given in Table 5. As we have 1984 channels, the system is called “Big Brother”.

Maximum DC current per HV channel The maximum current per line is defined by the number of powered straws and the average current consumption per straw at maximum luminosity. The Table 6 summarises the requirements. The maximum current to be delivered by a HV channel takes into account a safety factor to accommodate fluctuation in the luminosity.
Table 5: Number of HV feeds

<table>
<thead>
<tr>
<th></th>
<th>End-cap</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Per wheel A</td>
<td>64</td>
<td>Per wheel B</td>
<td>32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total wheels A</td>
<td>768</td>
<td>Total wheels B</td>
<td>512</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total End-cap</td>
<td>1280</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Barrel

	Per barrel Module-1	6	Per barrel Module-2	6					
	Per barrel Module-3	10							
Total Barrel		704							
Total		**1984**							

Table 6: Estimated maximum current per HV channel at full luminosity

<table>
<thead>
<tr>
<th>Detector element</th>
<th>Number of straws</th>
<th>Number of lines</th>
<th>Number of straws per line</th>
<th>Current per straw at full luminosity (mA)</th>
<th>Total current per line (mA)</th>
<th>Maximum DC current to be delivered by the HV source (mA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wheel-A</td>
<td>12288</td>
<td>64</td>
<td>192</td>
<td>0.0045</td>
<td>0.86</td>
<td>3</td>
</tr>
<tr>
<td>Wheel-B</td>
<td>6144</td>
<td>32</td>
<td>192</td>
<td>0.0045</td>
<td>0.86</td>
<td>3</td>
</tr>
<tr>
<td>Barrel-1</td>
<td>329</td>
<td>6</td>
<td>55</td>
<td>0.020</td>
<td>1.1</td>
<td>3</td>
</tr>
<tr>
<td>Barrel-2</td>
<td>520</td>
<td>6</td>
<td>87</td>
<td>0.010</td>
<td>0.9</td>
<td>3</td>
</tr>
<tr>
<td>Barrel-3</td>
<td>793</td>
<td>10</td>
<td>80</td>
<td>0.006</td>
<td>0.5</td>
<td>3</td>
</tr>
</tbody>
</table>

Maximum AC current per HV channel The HV distribution circuit includes a filter consisting of a 100 kOhm resistor and a 1 nF capacitor. In case of a straw discharge, the HV source must recharge the 1 nF capacitor through the 100 kOhm equivalent resistor sufficiently fast enough so that a discharge does not appear as a DC fluctuation. A maximum current of 16 mA during 100 ms must be delivered by the power supply.

AC (fast) and DC (slow) trip requirements When an anode wire is in contact with the cathode, the contact resistance is in the range 0-3 kOhm and some damage can appear in the straw (e.g. holes) under some conditions. Continuous discharges (when the wire is not in direct contact with the cathode) can also lead to damaging the straw conductive layer (dust) and in some cases a hole in the straw can appear. It has been shown that the damages appear only after more than 5000 discharges have taken place. Counting the number of discharges and their frequency is hence a very important requirement for the HV distribution system. The fast trip
The definition is one of the following:

\[\frac{dI}{dt} = (I(t + 10 \mu s) - I(t)) \geq \text{Threshold} \]

\[I(t) \geq I_{\text{trip}} \text{ when } I_{dc} \geq I_{\text{tripdc}} \]

The slow trip definition is the following:

\[\frac{1}{100} \sum_{n=1}^{100} I(t + n \times 10 \mu s) \geq I_{\text{tripdc}} \]

12.2 HVSys power supply

The system is a multi-channel power supply from HVSys. Contained in a 6U euromechanics crate, the system consists of up to twenty 21-channel HV modules and a crate controller. A backplane distributes control signals and low voltage power. A view of a full crate (420 channels, 2.5 kW HV power) is given in Figure 29.

![Figure 29: View of a full crate housing 420 HV channels.](image)

The main characteristics of the power supply are given in Table 7.

12.3 Implementation

The overall TRT HV power system is divided into four entities: each side of the barrel and each end-cap. Each barrel side and each end-cap requires, respectively, 352 and 640 channels. The power supplies are located in the counting room (USA15). Multiwire HV cables are used up to patch panel 2 (36 or 52 wires per cable, length in the range 60 - 100 m) and then miniature cables are used from the patch panel 2 location to the detector (coaxial cable of 1-mm outer diameter, length in the range 6 - 15 m). Several passive patch-panels are needed as seen on Figure 30.
Table 7: HVSys power supply characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of independent channels</td>
<td>420</td>
<td></td>
</tr>
<tr>
<td>Output voltage per channel</td>
<td>Programmable in the range 500 - 2000 V</td>
<td>In steps of 2 V</td>
</tr>
<tr>
<td>Current per channel</td>
<td>3 mA</td>
<td>Maximum continuous rating.</td>
</tr>
<tr>
<td>Ramp-up and Ramp-down</td>
<td>Programmable in the range 1 - 500 V/s in steps of 10 V/s</td>
<td></td>
</tr>
<tr>
<td>Noise and ripple</td>
<td>$\leq 50mV$ pp</td>
<td>0-100 MHz at output with a 5k - 1 nF filter</td>
</tr>
<tr>
<td>Voltage Monitor versus Output Voltage Accuracy</td>
<td>$\pm 0.5V \pm 0.1%$ of reading</td>
<td></td>
</tr>
<tr>
<td>Voltage Set versus Voltage monitor Accuracy</td>
<td>$\pm 1V \pm 0.1%$ of setting</td>
<td></td>
</tr>
<tr>
<td>Current Monitor versus Output Current Accuracy</td>
<td>$\pm 5\mu A$</td>
<td></td>
</tr>
<tr>
<td>Maximum Current Set versus Output Current Monitor Accuracy</td>
<td>$\pm 2.5\mu A$</td>
<td></td>
</tr>
<tr>
<td>Over-current trip condition</td>
<td>-</td>
<td>Output voltage set to 0V if the maximum output current value is exceeded for more than a programmable time</td>
</tr>
<tr>
<td>Efficiency</td>
<td>80%</td>
<td></td>
</tr>
</tbody>
</table>

- One patch panel in the control room adapting the power supply 3-channel miniature LEMO connectors to 52- or 36-way connectors attached to the multiwire HV cable;
- One in the patch panel 2 region converting between multiwire cables and miniature coaxial cables;
- One at the end of the cryostat flange for the end-cap (PFF1) and close to the barrel face before connection to the fuses (PPB1) to facilitate detector installation.

12.4 Control

The TRT HV system is controlled by a microprocessor contained in the crate controller module as well as a microcontrollers at every module board. The basic crate architecture contains a main microprocessor and four slave microprocessors, serving as four branch controllers. Built-in control firmware accepts external commands and communicates with the cells. A host computer can access the crate via a serial RS-232 communication line or via optocoupled CAN-bus or USB. Two lines of the internal system bus are used for communication with the high voltage cells. The communication is performed at a bit rate of about 10 kHz. The software of the
Figure 30: HV distribution scheme

dedicated branch controllers in a master regime realizes the interchange protocol. All the cells (HVCs) operate as slaves on the branch. The controller also controls the central power supplies LV and BV, monitors them and provides emergency procedures. Two 8-channel analog to digital converters are implemented for the monitoring of the central power supplies and temperatures of the critical elements. Commands for the controller are divided into several main groups according to their functional assignments.

- Commands for obtaining system unit status.
- Commands controlling the central power supply.
- Commands controlling cell(s).
- Cell detection commands.
- Commands addressed simultaneously to all cells.
- Service commands.
- Test commands.

The USB and CAN communication modes are rather primitive and do not exploit all the virtues of either USB or CAN but simply translate the ‘character’ based RS-232 protocol to either CAN (messages) or USB (packages) oriented media. Carefull studies of the system performance lead to a decision to abandon any control method than RS-232. To allow for easier integration of the system into the overall TRT DC system an OPC server for system controls was constructed as well as a FrameWork type for the hardware devices. This allows use of all of the FrameWork tools for mass parametrization and acces to configuration and conditions databases. The system performance is limited by the speed of internal bus and the required overhead in the OPC server necessary for robust error handling. The average response time for a broadcast command sent to the 420 channels contained in a crate is 30 secs.
13 Low Voltage Power

The low voltage distribution to the TRT front-end electronics is based on a two level scheme shown in Figure 31 and described in greater detail in [19].

- Bulk power supplies deliver power to the PP2 power boards;
- PP2 power boards housing radiation tolerant voltage regulators delivering the power to the front-end.

![Figure 31: View of the low voltage distribution system](image)

In order to reduce the length and hence the size of power cables, Wiener MARATON [20] radiation and magnetic field tolerant bulk supplies which can be installed in the experimental cavern (UX15) have been used.

13.1 Requirements

A bulk supply gives power to a PP2 box which is serving 1/32 of the detector (one side). There are 6 location sites, housing 3, 5 or 8 PP2 boxes each. Each PP2 contains 3 power boards, one for 1/32 of the barrel, one for 1/32 of the wheels A and one for 1/32 of the wheels B. In addition the PP2 box contains some electronics which needs to be powered. Three different voltages are needed for the front-end supply (+3V, -3V, +2.5V) and an additional one (5V) for the PP2 electronics. The total current needed per PP2 box and voltage source is given in Table 8. Each PP2 box will require 4 power supply channels. Because of the voltage drops introduced in all the cables (bulk to PP2 and PP2 to front-end) one need a much higher voltage at the bulk supply.

<table>
<thead>
<tr>
<th>Voltage</th>
<th>Barrel</th>
<th>Wheels A</th>
<th>Wheels B</th>
<th>PP2</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>+3V</td>
<td>13A</td>
<td>18A</td>
<td>12A</td>
<td></td>
<td>43A</td>
</tr>
<tr>
<td>-3V</td>
<td>11A</td>
<td>16A</td>
<td>10.5A</td>
<td></td>
<td>38A</td>
</tr>
<tr>
<td>+2.5V</td>
<td>13.5A</td>
<td>19A</td>
<td>12.5A</td>
<td></td>
<td>45A</td>
</tr>
<tr>
<td>PP2(5V)</td>
<td>A few A</td>
<td>A few A</td>
<td>A few A</td>
<td></td>
<td>A few A</td>
</tr>
</tbody>
</table>

Table 8: Current needed per supply
level than what is needed on the front-end; an 8V/300W MARATON channel has been used for all of them. As the needed power for the PP2 electronics is low, one MARATON channel is shared between 2 PP2 boxes. 64 PP2 boxes must be fed, leading to 224 MARATON channels (3 channels per box for powering the front-end and 1 channel every 2 PP2 box for the PP2 electronics).

13.2 MARATON WIENER supplies

There are three main components in the WIENER system (as seen in Figure 31):

1. 3U power crate with radiation and magnetic tolerant DC-DC each of them housing 12-channel 8V/300W elements;

2. 4U crate housing up to 6 3.6kW AC-DC converters (380V DC output). One AC-DC is needed to power a 12-channel 8V/300W element;

3. 6U crates housing up to 21 control boards. One control board controls a 12-channel 8V/300W element.

Position 1 is in the experimental cavern (UX15), while positions 2 and 3 are in the control room (USA15).

In UX15 they are racks for the TRT power supplies at five locations on the structure around the detector. Table 9 gives the summary of the different PP2 boxes powered from each location, as well as of the MARATON equipment needed at each place.

<table>
<thead>
<tr>
<th>Location</th>
<th>PP2 boxes location</th>
<th># PP2 boxes</th>
<th># channels</th>
<th># 3U power crates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1&2 side-C</td>
<td>13</td>
<td>46</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>1&2 side-A</td>
<td>13</td>
<td>46</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>3&4 side-A</td>
<td>13</td>
<td>46</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>3&4 side-C</td>
<td>13</td>
<td>46</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>5&6 side- A & C</td>
<td>12</td>
<td>38</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>64</td>
<td>256</td>
<td>24</td>
</tr>
</tbody>
</table>

In order to maintain a clear path for the current returns of the power lines feeding the front-end, each DC-DC is floating and two wires (power and return) are used to feed the PP2 boxes, except for the + and - 3V which are using a common return line.

13.3 Overall efficiency

There are voltage drops and inefficiencies at several levels in the system. Table 10 gives a summary of the voltage drops as from the MARATON DC-DC converter. The minimum and maximum values correspond to different cable lengths and section; it takes into account the drop on the return lines.

In order to have 2.5 V on the front-end boards, one has to deliver up to 8.3 V at the output of the DC-DC converters. This gives an efficiency of 30%. Taking into account the efficiency...
Table 10: Voltage drops

<table>
<thead>
<tr>
<th>Element</th>
<th>Voltage Drop</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type III cable</td>
<td>0.5 - 1 V</td>
</tr>
<tr>
<td>Regulators at PP2</td>
<td>0.8 - 1.5 V</td>
</tr>
<tr>
<td>Type II cables</td>
<td>0.5 - 1.3 V</td>
</tr>
<tr>
<td>Total maximum drop</td>
<td>3.8 V</td>
</tr>
</tbody>
</table>

of the AC-DC (main to 380 Vdc) and of the DC-DC (and neglecting the very small drop on the type IV cable) leads to an overall efficiency of about 20%.

13.4 Control

13.4.1 Bulk Supplies

The MARATON power supplies are delivered with an OPC server package which serves for the remote control of the unit. The server operates via Ethernet. The OPC standard is an interfacing method to avoid the need of device specific drivers. CERN control group from IT department provides users with the skeleton software solution called FRAMEWORK. The package contains many useful tools serving for construction, integration and configuration of the complex multi-channel systems build of the standard, widely available equipment. The MARATON system has been included into FRAMEWORK which makes its integration very easy. The control commands of the MARATON system are limited. Basically the only important action which can be undertaken by user is switching the given output on or off. For the monitoring purposes the system gives an access to the values of the output voltages and currents. The control panels has been designed which allow user the monitoring and control of the system.

13.4.2 Patch Panels

Groups of regulators supplying geographically close parts of detector front-end electronics have been placed on a printed circuit board together with the control and monitoring electronics. One card of 440x200 mm size houses up to 36 regulators (positive and negative) delivering 6/8 voltage sets: ±3 V for analogue electronics and +2.5 V for digital part. Three boards are used to power a 1/32 phi slice of the detector: 1 for the barrel part and two for the end-cap wheels. The high power dissipation on the board (60-70 W) necessitates an aggressive liquid cooling system, described in section 4.2. The circuits on the board perform the functions described in the following paragraphs.

Voltage regulation and setting The regulators used are of the adjustable version. Changing the voltage 'adjust' input allows output to be set at the value assuring the proper operation of the Front End electronics during life cycle of the experiment when semiconductor devices could change its characteristics due to radiation. The variable voltage is delivered by radiation hard DAC embedded in the DTMROC chip (see section 2). The settings of the DAC’s are controlled over simple 3-wire serial protocol. The current swing of the DAC output allows for regulators output to be varied by 0.5V up to 1.2 V, which is fully covering expected change of the voltage supplies of Front End electronics [21]. Some Front End parts draw current slightly exceeding

70
the maximum one allowed for the regulators (wheels A). For these channels parallel operation of the regulators has been implemented. Carefully designed biasing network ensures correct sharing of current between the two regulators.

Voltage and current measurements in each individual output line. The board contains embedded controller - an ELMB (Embedded Local Monitoring Board), standard control unit designed for ATLAS. All voltage outputs are connected to the ELMB’s ADC allowing for output voltage measurements. The same ADC is measuring the output currents, by monitoring the voltage drop on 22 mOhms serial resistors inserted in output lines.

Over Current protection. The regulators have an over-current protection which, when current drawn exceeds designed value, operates the regulator in constant current mode. Such a state of regulator is signalled by a level on one of the pins. This signal is latched by board logic and can be read-out by ELMB and if enabled will switch the affected channel off.

Enabling and disabling individual output lines (on/off) The DTMROC has an output which via the proper command can be set ‘true’ or ‘false’. This output is connected to the ‘inhibit’ input of the pertinent regulator thus providing a mean to switch the regulator output on/off. The same input is as well accepting the signal from over-current-monitor circuitry.

13.4.3 **Control and monitoring**

The TRT power supplies control system has been built upon the commercial SCADA (System Control And Data Acquisition) software package chosen by CERN as standard for control systems of LHC experiments - PVSSII. Detailed description of the available tools and methods are available elsewhere [14].

CAN bus and ELMB ELMB is a basic hardware unit of ATLAS detector control system which can operate in magnetic field and radiation environment of experimental cavern. It contains 64 channels multiplexed to the ADC input and several I/O digital ports. Its basic functionality and detailed description can be found elsewhere [10]. ELMB commands and monitoring readback values are sent over the CAN bus [22] - one of the CERN recommended commercial fieldbuses. The CAN bus, designed and widely used in automobile industry, is a very robust communication layer and both hardware and software components are available from wide range of manufacturers. Different autonomous actions can be taken when ELMB error condition was detected: node reboot, microcontroller firmware reload, disconnecting affected node from CAN bus. Merging the NodeID with MessageID codes to COBID (CAN Object ID) field allowed to set very efficient message oriented priority mechanism. A set of broadcast messages allows reducing bus load in complex systems.

DTMROC The DTMROC is the digital front end chip for the TRT detector. This radiation hard chip contains four 8-bit DAC’s which are used here to set the output voltage of the regulators. Writing and reading of the DTMROC registers is performed over a 3-line serial protocol (data-in, data-out, clock) which is driven by the ELMB in this application.
LVPP boards control The main development effort spend on the TRT low voltage system has been directed into the design, programming and debugging of the Low Voltage Patch Panel boards (LVPP) containing the voltage regulators and main controlling/monitoring circuitry. As already has been mentioned the heart of the LVPP is an ELMB communicating with the host controller over the CAN bus. The read-out of the analogue values (current and voltage) is typical (and standard) for ELMB use and is based on the CANOpen [22] software layer where the OPC standard for data access has been implemented. The ‘analogue’ functionality of the ELMB has been included as well into CERN FRAMEWORK package so the integration and control is reasonably easy and straightforward. Fully custom made design was done for the control of the voltage regulators by DTMROC’s. We have designed and build an extension to the standard PVSS CTRL scripting language [14], which allows for user defined functions to be interpreted by PVSS in the same way as PVSS functions. It consists of a set of class methods compiled into new shared library DLL, providing the input, output parameters and return value. The functions access directly the CANbus driver. The DLL contains following functionalities.

- Initialization of the CANbus, ELMB, DTMROC
 - Operational:
 - Set DAC’s
 - Read back DAC’s
 - Set inhibits in DTMROC’s
 - Read back inhibit state
 - Enable/disable and read out OCM state
- Diagnostics:
 - Reset (soft and hard) of DTMROC’s,
 - Send given number of clocks to DTMROC’s
 - Get state of a given DTMROC,
 - Set ELMB in the requested state
 - Read back ELMB state
 - Close connection
Part IV
Installation, Integration and Performance

14 Installation/Integration/Testing

The front end electronics for the TRT have undergone an extensive testing regime throughout the course of the installation process, testing functionality, individual noise performance, and performance inside of the larger system. There were three distinct phases of this testing regime: functionality tests after stuffing and burn-in, connectivity and noise tests before and after mounting the boards on the detector, and system level tests after the electronics installation was complete. These three phases will be described below.

14.1 Front End Board Initial Tests and Preparation

The initial testing of the TRT Endcap Front End boards was done at the Niels Bohr Institute in Copenhagen, and the testing of the Front End boards for the TRT Barrel was done at CERN, with manpower from the University of Pennsylvania, Lund University, and Hampton University. A unified testing procedure was used, with testers at both locations using the same test suite, writing results into a single MySQL database. The test suite, which was written by Ole Ro/hne [23], was designed to exercise the complete functionality of each board and its corresponding chips. All of the registers of each DTMROC were exercised, a fine timing scan was run to check the health of the command lines, and a noise scan was run with the internal test pulse firing to characterize the analog performance and identify dead channels. For the Endcap boards, a test was also run with an external pulse injector as another way to identify dead or problematic channels. The data from these tests were stored in the previously mentioned MySQL database, and a web interface to this database was developed for later viewing, as well as tracking board shipments and repair histories.

The cuts that were made at this stage were the following: no register/memory failures or fine timing anomalies were tolerated in the chips on any boards. For the endcap boards, no dead or otherwise non-functional channels were allowed at this stage either. For the Barrel boards, which had a much less forgiving granularity (up to 432 channels on a single PCB, vs 64 for the endcap boards), a cut of no more than roughly 0.5 percent dead or otherwise non-functional channels for a single board was used. All boards which passed the initial testing phase were burned in for 1 week at \(\sim 80 \) degrees C at a special facility which was constructed for this purpose at NBI in Copenhagen. The burn-in facility continuously measured the current consumption of the front-end boards as well as maintaining a constant temperature through the burn-in process. After burn-in, all boards were tested a final time. Those boards which failed the tests (either before, or after burn-in) were sent to Penn for repairs, and then retuned to CERN or NBI to be inserted back into the testing program.

14.2 Front End Board Installation and Tests

After passing the first round of tests, The FE Boards for both the TRT Barrel and Endcap were transferred to the SR-1 Integration Facility at CERN to be installed on the detector. A series of
tests was run on the boards at this point with two main goals: characterizing the noise profile of each front end board, and ensuring that the boards were properly connected to the detector. In order to characterize the noise performance, three tests were run: one which recorded the low (tracking) threshold noise response for all low threshold values; a second, similar test which looked at the response to a calibrated internal test pulse rather than noise; and a third test which recorded the high (transition radiation) threshold response to the internal test pulse for all high threshold values. This series of tests was run both before and just after each board was mounted on the detector - see Fig.\[32\] Anomalies in the noise response of a given board tended to point to problems with the mechanical insertion and contact of the board with the faraday shield, so particular attention was paid to the results of these tests.

In addition to the threshold scans, other tests were done after the board was mounted to determine if the channels were properly connected to their respective straws. In the barrel, a ‘connectivity test’ was run where an external pulse was applied to the high voltage system and data from the corresponding pulse that was induced on the annode wires was read out to show connectivity. For the endcaps, where the design of the high voltage system made this approach impossible, the determination of connectivity was made through a twofold process of analyzing the difference between on and off detector noise rates, and running a scan which uses the ‘accumulate mode’ of the DTMROC to measure a background rate of high threshold hits when high voltage and active gas are applied to the detector [24]. The combination of this “accumulate mode” scan with the difference between on and off detector noise rates provided for an equally powerful identification of disconnected channels.

When the electronics integration was complete, the numbers of dead channels/straws were as follows: For the Barrel, there were 1755 dead straws out of 105,088 total (1.7

14.3 TRT Stand-alone noise and system tests

After the front-end board installation phase was complete, a phase of system level tests began, looking for noise or readout issues in the larger detector. The first of these tests was simply to look for increasing levels of noise as larger and larger fractions of the detector electronics were powered and read out in unison. The front-end electronics (and especially that of the barrel) is known to have a sensitivity to clock pick-up as a result of having the 40MHz control lines in close proximity to the sensitive analog inputs, and it was a worry that as more and more clock signals were running on the detector this pick-up would increase. When this test was first run, some regions of increased noise were found. However, they all pointed to gaps in the outer faraday shield, and they all disappeared when the gaps in the shield were filled as shown in Figure [33]. Once the outer faraday shield was completed, there was no increase in noise as a result of powering and clocking large sections of the detector.

Another one of the concerns was that the front end electronics would be affected by pickup arising from its own data read out. To test for this susceptibility, a special trigger was set up to send pairs of triggers, the first one being a normal noise event, and the second one taking data that corresponded with the time when the first event was being read out. A larger occupancy in the data from the second trigger would point to a sensitivity to data read-out pick-up. The result of this study also depended heavily on the state of the outer faraday shield. When this test was first done, and the faraday shield was not yet complete, some chips showed a slight sensitivity to data read-out pick-up. however, the magnitude of this effect was very small, and in the barrel,
14.4 Combined noise tests with SCT

After internal noise issues, the main worry for the TRT electronics performance was interference or pick-up between the TRT and the SCT. As the two subdetectors are in such close proximity, and as their services often run one on top of the other in the cable trays leading to the detectors, great care was taken to isolate the two systems in the design. This approach seems to have succeeded, as no crosstalk or interference between the two systems has been observed to date. The first test in this domain was to simply run the TRT with a noise trigger with the SCT powered off, and then take a second noise run with the SCT powered on. The comparison of these two states shows no difference in noise occupancy in the TRT as a result of the SCT being on or off. A second test was to look for a sensitivity in the TRT electronics to the SCT read-out. This test was similar to the internal TRT test for read-out pick up, except that in this case the TRT trigger was timed to coincide with the SCT read-out cycle, rather than that of the TRT. Again, no increase in noise was found when the SCT was reading out as compared to when it was not. Finally, the effect of a poor grounding scheme was investigated. Here, the TRT
analog ground plane was attached to the SCT digital power return ground, and a noise run was taken. Once again, there was no noticeable increase in noise rates, indicating that there is little sensitivity in the TRT electronics to mistaken or poorly made grounding connections between the two subsystems.

14.5 Cosmic ray runs with SCT and ATLAS

In 2006, a series of cosmic ray runs was taken with the TRT and SCT combined, in the surface building (SR-1) at CERN where the two detectors were assembled and integrated. The runs with the TRT and SCT barrels were taken in the spring and summer, while those with the TRT and SCT endcaps (C-side only) were taken in the fall. For the run including the TRT Barrel, 1/8 of the barrel was read out (1/16th on top and 1/16th on bottom), comprising just
over 13,000 channels. For the endcap run, 1/16 of the endcap was read out, comprising roughly 7500 channels. In both cases, a simple scintillator trigger was set up to highlight the active regions, and the standard ATLAS DAQ and monitoring infrastructure was used to record and monitor the data. These runs provided valuable experience in commissioning, running, and monitoring the detector. In addition, the data sets that were generated were extremely useful for tracking and alignment studies as it was the first instance of recorded tracks in the final detector.

Once the detector was fully installed and integrated into ATLAS, the TRT participated in several global commissioning runs (the series of which is still ongoing as of this writing), again taking cosmic ray data (see Fig 34), with varying portions of the detector being read out. These commissioning runs provided valuable running experience with the final hardware setup and the global ATLAS DAQ - something that was not available before the detector was installed. In particular, methods for setting and tuning the front-end voltages, setting and tuning the tracking threshold, and for tuning the fine timing required for proper drift-time measurement were developed. In particular, the voltage and temperature sense functionality in the DTMROC has proved essential in properly setting up and monitoring the voltages on the front-end electronics, as this is the only direct measurement available of the voltage at the front-end electronics, deep within the detector. Also, these commissioning runs provide critical experience for the DAQ system inside of ATLAS, as well as monitoring and data analysis.

Figure 34: Cosmic ray tracks in the TRT Barrel from the “M3” run in ATLAS using the Tile Cal trigger.
15

References

[6] ATLAS TRT End Cap Detector, to be published....

[7] ATLAS TRT Barrel Detector, to be published...

78

[23] Dr. Ole M. Rohne, University of Oslo, private communication.