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Chapter 1

Introduction

1

b1 is a prerequisite for this course.
One of our main aims in this course is to prove the following:

Theorem 1.0.1 (Gödel 1938) If set theory without the Axiom of Choice (ZF)
is consistent (i.e. does not lead to a contradiction), then set theory with the
axiom of choice (ZFC) is consistent.

Importance of this result: Set theory is the axiomatization of mathematics, and
without AC no-one seriously doubts its truth, or at least consistency. However,
much of mathematics requires AC (eg. every vector space has a basis, every ideal
can be extended to a maximal ideal). Probably most mathematicians don’t
doubt the truth, or at least consistency, of set theory with AC, but it does lead
to some bizarre, seemingly paradoxical results—eg. the Banach-Tarski paradox
(explain). Hence it is comforting to have Gödel’s theorem.

I formulate the axioms of set theory below. For the moment we have:

(AC.) Axiom of Choice (Zermelo) If X is a set of non-empty pairwise disjoint
sets, then there is a set Y which has exactly one element in common with each
element of X.

To complement Gödel’s theorem, there is also the following result which is
beyond this course:

Proposition 1.0.2 (Cohen 1963) If ZF is consistent, so is ZF with ¬AC.

We shall also discuss Cantor’s continuum problem which is the following.
Cantor defined the cardinality, or size, of an arbitrary set. The cardinality

of A is denoted cardA. He showed that card R > card N, but could not find any
set S such that card R > card s > card N, so conjectured:

1See Andreas Blass, “On the inadequacy of inner models”, JSL 37 no. 3 (Sept 72) 569–571.
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(CH.) Cantor’s Continuum Hypothesis For any set S, either cardS ≤ card N,
or cardS ≥ card R.

Again Gödel (1938) showed:

Theorem 1.0.3 If ZF is consistent, so is ZF+AC+CH,

and Cohen (1963) showed:

Proposition 1.0.4 If ZF is consistent, so is ZF+AC+¬CH.

We shall prove Gödel’s theorem but not Cohen’s.
Of course Gödel’s theorem on CH was perhaps not so mathematically press-

ing as his theorem on AC since mathematicians rarely want to assume CH, and
if they do, then they say so.

We first make Gödel’s theorem precise, by defining set theory and its lan-
guage.



Chapter 2

Basics

See D. Goldrei Classic Set Theory, Chapman and Hall 1996, or H.B. Enderton
Elements of Set Theory, Academic Press, 1977.

The language of set theory, LST, is first-order predicate calculus with equal-
ity having the membership relation ∈ (which is binary) as its only non-logical
symbol.

Thus the basic symbols of LST are: =, ∈, ∨, ¬, ∀, ( and ), and an infi-
nite list v0, v1, . . . , vn, . . . of variables (although for clarity we shall often use
x, y, z, t, . . . , u, v, . . . etc. as variables).

The well-formed formulas, or just formulas, of LST are those expressions
that can be built up from the atomic formulas: vi = vj , vi ∈ vj , using the rules:
(1) if φ is a formula, so is ¬φ, (2) if φ and ψ are formulas, so is (φ∨ψ), and (3)
if φ is a formula, so is ∀viφ.

2.1 Some standard abbreviations

We write (φ ∧ ψ) for ¬(¬φ ∨ ¬ψ); (φ → ψ) for (¬φ ∨ ψ); (φ ↔ ψ) for ((φ →
ψ)∧(ψ → φ)); ∃xφ for ¬∀x¬φ; ∃!xφ for ∀y(φ ↔ x = y); ∃x ∈ yφ for ∃x(x ∈ y∧φ;
∀x ∈ yφ for ∀x(x ∈ y → φ); ∀x, yφ (etc.) for ∀x∀yφ; x /∈ y for ¬x ∈ y.

We shall also often write φ as φ(x) to indicate free occurrences of a variable
x in φ. The formula φ(z) (say) then denotes the result of substituting every free
occurrence of x in φ by z. Similarly for φ(x, y), φ(x, y, z),. . . , etc.

2.2 The Axioms

(A1.) Extensionality

∀x, y(x = y ↔ ∀t(t ∈ x ↔ t ∈ y))

Two sets are equal iff they have the same members.
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(A2.) Empty set
∃x∀y y /∈ x

There is a set with no members, the empty set, denoted ∅.

(A3.) Pairing
∀x, y∃z∀t(t ∈ z ↔ (t = x ∨ t = y))

For any sets x, y there is a set, denoted {x, y}, whose only elements are x and
y.

(A4.) Union
∀x∃y∀t(t ∈ y ↔ ∃w(w ∈ x ∧ t ∈ w))

For any set x, there is a set, denoted
⋃

x, whose members are the members of
the members of x.

(A5.) Separation Scheme If φ(x,y) is a formula of LST, the following is an
axiom:

∀x∀u∃z∀y(y ∈ z ↔ (y ∈ u ∧ φ(x, y))

For given sets x, u there is a set, denoted {y ∈ u : φ(x, y)}, whose elements are
those elements y of u which satisfy the formula φ(x, y).

(A6.) Replacement Scheme If φ(x, y) is a formula of LST (possibly with other
free variables u, say) then the following is an axiom:

∀u[∀x, y, y′((φ(x, y) ∧ φ(x, y′)) → y = y′) → ∀s∃z∀y(y ∈ z ↔ ∃x ∈ s φ(x, y))]

The set z is denoted {y : ∃xφ(x, y) ∧ x ∈ s}. “The image of a set under a

function is a set.”

(A7.) Power Set

∀x∃y∀t(t ∈ y ↔ ∀z(z ∈ t → z ∈ x))

For any set x there is a set, denoted P(x), whose members are exactly the subsets
of x.

(A8.) Infinity

∃x[∃y(y ∈ x ∧ ∀z(z /∈ y) ∧ ∀y(y ∈ x → ∃z(z ∈ x ∧ ∀t(t ∈ z ↔ (t ∈ y ∨ t = y))))]

There is a set x such that ∅ ∈ x and whenever y ∈ x, then y ∪ {y} ∈ x. (Such
a set is called a successor set. The set ω of natural numbers is a successor set.

(A9.) Foundation

∀x(∃z z ∈ x → ∃z(z ∈ x ∧ ∀y ∈ zy /∈ x))
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If the set x is non-empty, then for some z ∈ x, z has no members in common
with x.

(A10.) Axiom of Choice

∀u[[∀x ∈ u∃y y ∈ x∧∀x, y((x ∈ u∧y ∈ u∧x 6= y) → ∀z(z /∈ x∨ /∈ y))] → ∃v∀x ∈ u∃!y(y ∈ x∧y ∈ v)]

We write ZF∗ for the collection of axioms A1–A8; ZF for A1–A9; ZFC for
A1–A10.

2.3 Proofs in principle and proofs in practice

Suppose that T is one of the above collections of axioms. If σ is a sentence of
LST (ie. a formula without free variables), we say that σ is a theorem of T ,
or that σ can be proved from T , and write T ⊢ σ, if there is a finite sequence
σ1, . . . , σn of LST formulas such that σn is σ, and each σi is either in T or else
follows from earlier formulas in the sequence by a rule of logic. Clearly every
theorem of ZF is a theorem of ZFC and every theorem of ZF∗ is a theorem of
ZF. To say that T is consistent means that for no sentence φ of LST is (φ∧¬φ)
a theorem of T (which is in fact equivalent to saying that there is some sentence
which is not provable from T ). This now makes theorem 1.0.1 precise: we must
show that if ZF is consistent, then so is ZFC.

Now in proving this theorem we shall need to build up a large stock of
theorems of ZF (and we shall discuss some theorems of ZFC as well) but to give
formal proofs of these would not only be tedious but also infeasible. We shall
therefore employ the standard short-cut of adopting a Platonic viewpoint. That
is, we shall think of the collection of all sets as being a clearly defined notion
and whenever we want to show a sentence, σ, say, of LST has a formal proof
(from ZF say) we shall simply give an informal argument that the proposition
asserted by σ about this collection is true. Indeed, we shall often not bother to
write out σ as a formula of LST at all; we shall simply write down (in English
plus a few logical and mathematical symbols) “what it is saying”. Of course we
shall take care that, in our informal argument, we only use those propositions
about the collection of all sets asserted by the axioms of ZF. Thus, for example,
if I write:

Theorem 2.3.1 (ZF∗) There is no set containing every set.

then I mean that from the axioms of ZF∗ there is a formal proof of the LST
sentence

∀x∃y y /∈ x.

Actually, it probably wouldn’t be too difficult to give a formal proof of this,
but we shall supply the following as a proof:
Proof. Suppose A were a set containing every set. By A5 {x ∈ A : x /∈ x} is
a set, call it B. Then B ∈ B iff B ∈ A and B /∈ B. But B ∈ A is true (as A
contains every set), so B ∈ B iff B /∈ B—a contradiction. ¤
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Of course in all such cases, the reader should convince him- or herself that
(a) the informal statement we are proving can be written as a sentence of LST,
and (b) the given proof can be converted, at least in principle, to a formal proof
from the specified collection of axioms.

2.4 Interpretations

The Completeness Theorem for first-order predicate calculus (also due to Gödel)
states that a sentence σ (of any first-order language) is provable from a collection
of sentences S (in the same language) if and only if every model of S is a model
of σ. Equivalently, S is consistent if and only if S has a model. Let us examine
this in our present context. Firstly, a structure for LST is specified by a domain
of discourse M over which the quantifiers ∀x . . . and ∃x . . . range, and a binary
relation E on M to interpret the membership relation ∈. If σ is a sentence of
LST which is true under this interpretation we say that σ is true in 〈M,E〉 or
〈M,E〉 is a model of σ, and write 〈M,E〉 ² σ. If T is a collection of sentences
of LST we also write 〈M,E〉 ² T iff 〈M,E〉 ² σ for each sentence σ in T . (If
φ(x1, . . . , xn) is a formula of LST with free variables among x1, . . . , xn and
a1, . . . , an are in the domain M , we also write 〈M,E〉 ² φ(a1, . . . , an) to mean
φ(x1, . . . , xn) is true of a1, . . . , an in the interpretation 〈M,E〉.)

For example, suppose M contains just the two distinct elements a and b, and
E is specified by a → b, ie. E(a, b), not E(b, a), not E(a, a), not E(b, b). Then
〈M,E〉 ² A2, ie. M ² ∃x∀yy /∈ x, since it is true that there is an x in M (namely
a) such that for all y ∈ M , not E(y, x). It is also easy to see that 〈M,E〉 ² A1
and 〈M,E〉 ² ¬A3. Notice that, by the completeness theorem, this implies that
A3 is not provable from the axioms A1, A2 since we have found a model of the
latter two axioms which is not a model of the former.

Exercise 2.4.1 Let Q be the set of rational numbers and ∈ the usual ordering
of Q. Which axioms of ZF are true in 〈Q,∈〉?

Note that the Platonic viewpoint adopted here amounts to regarding a sen-
tence, σ, say, of LST as true, if and only if 〈V ∗,∈〉 ² σ, where V ∗ is the collection
of all sets, and ∈ is the usual membership relation.

The completeness theorem provides a method for establishing theorem 1.0.1.
For we can rephrase that theorem as: If ZF has a model then so does ZFC. Indeed
we shall construct a subcollection L of V ∗ such that if we assume 〈V ∗,∈〉 ² ZF,
then 〈L,∈〉 ² ZFC. (Actually our proof will yield somewhat more which ought to
be enough to satisfy any purist. Namely, it will produce an effective procedure
for converting any proof of a contradiction (ie. a sentence of the form (φ∧¬φ))
from ZFC to a proof of a contradiction from ZF.)

We now turn to the development of some basic set theory from the axioms
ZF∗.
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2.5 New sets from old

The axioms of ZF are of three types: (a) those that assert that all sets have a
certain property (A1, A9), (b) those that sets with certain properties exist (A2,
A8), and (c) those that tell us how we may construct new sets out of given sets
(A3–A7). Our aim here is to combine the operations implicit in the axioms of
type (c) to obtain more ways of constructing sets and to introduce notations for
these constructions (just as, for example, we introduced the notation

⋃
x for the

set y given by A4). It will be convenient to use the class notation {x : φ(x)} for
the collection (or class) of sets x satisfying the LST formula φ(x).1 As we have
seen, such a class need not be a set. However, in the following definitions it can
be shown (from the axioms ZF∗) that we always do get a set. This amounts to
showing that for some set a, if b is any set such that φ(b) holds (ie. V ∗ ² φ(b))
then b ∈ a, so that {x : φ(x)} = {x ∈ a : φ(x)} which is a set by A5. I leave all
the required proofs as exercises—they can also be found in the books.

In the following, A,B, . . . , a, b, c, . . . , f, g, a1, a2, . . . , an, . . . etc. all denote
sets.

1. {a1, . . . , an} : = {x : x = a1 ∨ . . . ∨ x = an}.

2. a ∪ b : =
⋃
{a, b} = {x : x = a ∨ x = b}.

3. a ∩ b : = {x : x = a ∧ x = b}.

4. a \ b : = {x : x ∈ a ∧ x /∈ b}.

5.
⋂

a : =
{

{x:∀y∈ax∈y} if a 6= ∅
undefined if a = ∅

.

6. 〈a, b〉 : = {{a}, {a, b}}. (Lemma. 〈a, b〉 = 〈c, d〉 ↔ (a = c ∧ b = d).)

7. a × b : = {x : ∃c ∈ a∃d ∈ bx = 〈c, d〉}. (Remark: Of course the proof
that a× b is a set requires not only “bounding the x’s”, but also showing
that the expression “∃c ∈ a∃d ∈ bx = 〈c, d〉” can be written as a formula
of LST (with parameters a, b).)

8. a × b × c : = a × (b × c),. . . , etc.

9. a2 : = a × a, a3 : = a × a × a,. . . , etc.

10. We write a ⊆ b for ∀x ∈ a(x ∈ b).

11. c is a binary relation on a we take to mean c ⊆ a2. (Similarly for
ternary,. . . , n-ary, . . . relations.)

12. If A is a binary relation on a we usually write xAy for 〈x, y〉 ∈ A.

A is called a (strict) partial order on a iff

1Actually, φ(x) will be allowed to have parameters (ie. names for given sets), so is not
strictly a formula of LST. Notice, however, that parameters are allowed in A5 and A6 (the
“x” and “u”).
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(a) ∀x, y ∈ a(xAy → ¬yAx),

(b) ∀x, y, z ∈ a((xAy ∧ yAx) → xAz).

If in addition we have (3) ∀x, y ∈ a(x = y ∨ xAy ∨ yAx), then A is called
a (strict) total (or linear) order of a.

13. Write f : a → b (f is a function with domain a and codomain b, or simply
f is a function from a to b) if f ⊆ a× b and ∀c ∈ a∃!d ∈ b〈c, d〉 ∈ f . Write
f(c) for this unique d.

14. If f : a → b, f is called injective (or one-to-one) if ∀c, d ∈ a(c 6= d →
f(c) 6= f(d)), surjective (or onto) if ∀d ∈ b∃c ∈ af(c) = d, and bijective if
it is both injective and surjective.

15. We write a ∼ b if ∃f(f : a → b ∧ f bijective).

16. ab : = {f : f : a → b}.

17. A set a is called a successor set if

(a) ∅ ∈ a and

(b) ∀b(b ∈ a → b ∪ {b} ∈ a).

Axiom A8 implies a successor set exists and it can be further shown that a
unique such set, denoted ω, exists with the property that ω ⊆ a for every
successor set a. The set ω is called the set of natural numbers. If n,m ∈ ω
we often write n + 1 for n ∪ {n} and n < m for n ∈ m and 0 for ∅ (in
this context). The relation ∈ (ie. <) is a total order of ω (more precisely
{〈x, y〉 : x ∈ ω, y ∈ ω ∧ x ∈ y} is a total order of ω).

18. The set ω satisfies the principle of mathematical induction, ie. if ψ(x) is
any formula of LST such that ψ(0)∧∀n ∈ ω(ψ(n) → ψ(n+1)) holds, then
∀n ∈ ωψ(n) holds.

19. The set ω also satisfies the well-ordering principle, ie. for any set a, if
a ⊆ ω and a 6= ∅ then ∃b ∈ a∀c ∈ a(c > b ∨ c = b).

20. Definition by recursion

Suppose that f : A → A is a function and a ∈ A. Then there is a unique
function g : ω → A such that:

(a) g(0) = a, and

(b) ∀n ∈ ω g(n + 1) = f(g(n)).

(Thus, g(n) = f(f · · · (f
︸ ︷︷ ︸

n times

a)) · · ·)).)

More generally, if f : B × ω × A → A and h : B → A are functions, then
there is a unique function g : B × ω → A such that
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(a) ∀b ∈ Bg(b, 0) = h(b), and

(b) ∀b ∈ B∀n ∈ ω g(b, n + 1) = f(b, n, g(b, n)).

Using this result one can define the addition, multiplication and exponen-
tiation functions.

(Remark I have adopted here the usual convention of writing g(b, n + 1)
for g(〈b, n + 1〉). Similarly for f .)

21. A set a is called finite iff ∃n ∈ ωa ∼ n.

22. A set a is called countably infinite iff a ∼ ω.

23. A set a is called countable iff a is finite or countably infinite. (Equivalently:
iff ∃f(f : a → ω ∧ f injective).)

(Theorem Pω is not countable. In fact, for no set A do we have A ∼ PA.
(Cantor))
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Chapter 3

Classes, class terms and

recursion

V ∗=the collection of all sets (assuming only ZF∗).
We call collections of the form {x : φ(x)}, where φ is a formula of LST,

classes.
Every set is a class, a = {x : x ∈ a}. (so φ(x) is x ∈ a here).
We must be careful in their use—we cannot quantify over them but some

operations will still apply, eg. if U1 = {x : φ(x)} and U2 = {x : ψ(x)}, then

U1 ∩ U2 = {x : φ(x) ∧ ψ(x)}

U1 ∪ U2 = {x : φ(x) ∨ ψ(x)}

U1 × U2 = {x : ∃y(y = 〈s, t〉 ∧ φ(s) ∧ ψ(t))}

(3.1)

and so on. x ∈ U1 means φ(x) and U1 ⊆ U2 means ∀x(φ(x) → ψ(x)).
Classes are only a notation—we can always eliminate their use.
Note that V ∗ is a class—V ∗ = {x : x = x}.
If F,U1, U2 are classes with the properties that F ⊆ U1 × U2 and ∀x ∈

U1∃!y ∈ U2 〈x, y〉 ∈ F , then F is called a class term, or just a term, and we
write F (x) = y instead of 〈x, y〉 ∈ F . We also write F : U1 → U2, although
F may not be a function, as U1 may not be a set. So if F = {x : ∃y1, y2(x =
〈y1, y2〉 ∧ y2 =

⋃
y1)}, so for all sets F (x) =

⋃
x, then F is a class term. We

need class terms for higher recursion.

3.1 The recursion theorem for ω

(Use only ZF∗ throughout.)

Theorem 3.1.1 Suppose G : U → U is a class term and a ∈ U . Then there is
a term F : ω → U (which is therefore a function) such that

13
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1. F (0) = a and

2. ∀n ∈ ω F (n + 1) = G(F (n)).

Proof.

Lemma 3.1.2 Suppose that n ∈ ω. Then there is a unique function f , with
domain n + 1, such that

1. f(0) = a and

2. ∀m ∈ nf(m + 1) = G(f(m)).

(Recall n + 1 = {m : m < n}.)
Proof. Existence: By induction on n.

For n = 0: Let f = {〈0, a〉}. Then f is a function with domain {0} = 1 =
0 + 1, such that f(0) = a and ∀m ∈ 0 f(m + 1) = G(f(m)). (trivially)

Suppose true for n. Let f have domain n and satisfy (1) and (2). Let
b = f(n). Let f ′ = f ∪ {〈n + 1, G(b)〉}. Then f ′ is a function with domain
n+1∪{n+1} = (n+1)+1. Further f ′(0) = f(0) = a (since 0 ∈ n+1 = domf)
(using (1)) and if m ∈ n+1 = n∪{n}, then either m ∈ n, in which case m+1 ∈
n + 1 = domf , so f ′(m + 1) = f(m + 1) = G(f(m)) (using (2)) (by properties
of f), or m = n, so f ′(m + 1) = f ′(n + 1) = G(b) = G(f(n)) = G(f(m)), as
required. So the proposition is true for n + 1.

The uniqueness is also by induction. ¤

We now define F by

F = {z : ∃x ∈ ω∃y ∈ Uz = 〈x, y〉 ∧ ∃f(f is a function with domain x + 1

such that f(0) = a ∧ ∀w ∈ xf(w + 1) = G(f(w)) ∧ f(x) = y)}

—the stuff after the colon is a formula of LST.
It is easy to show that ∀x ∈ ω∃!y ∈ U〈x, y〉 ∈ G, and that F satisfies (1)

and (2) of Theorem 3.1.1. ¤

Some applications:

Definition 3.1.3 A set a is called transitive if ∀x ∈ a∀y ∈ x y ∈ a. (ie. x ∈
a → x ⊆ a, or a =

⋃
a.)

Lemma 3.1.4 ω is transitive; and if n ∈ ω, then n is transitive.

Proof. See the books. ¤

Theorem 3.1.5 For any set a, there is a unique set b, denoted TC(a), and
called the transitive closure of a, such that

1. a ⊆ b,

2. b is transitive,



3.1. THE RECURSION THEOREM FOR ω 15

3. whenever a ⊆ c and c is transitive, then b ⊆ c.

Proof. Uniqueness is clear since if a ⊆ b1 and a ⊆ b2, b1 and b2 transitive and
both satisfying (3), then b1 ⊆ b2 and b2 ⊆ b1, so b1 = b2.

For existence (idea: b = a∪
⋃

a∪
⋃ ⋃

a∪ . . .) let G be the class term given
by G(x) =

⋃
x (for x ∈ V ∗). Apply 3.1.1, to get a term F such that

1. F (0) = a, and

2. ∀n ∈ ωF (n + 1) = G(F (n)) =
⋃

F (n).

By replacement, there is a set B such that B = {y : ∃x ∈ ω F (x) = y}.
Let b =

⋃
B =

⋃
{F (n) : n ∈ ω}. Then

1. Since a = F (0) and F (0) ∈ B, we have a ∈ B, so a ⊆
⋃

B = b.

2. Suppose x ∈ b and y ∈ x. We must show y ∈ b. But x ∈ b implies x ∈
⋃

B
implies x ∈ F (n) for some n ∈ ω implies x ⊆

⋃
F (n), so y ∈

⋃
F (n), so

y ∈ F (n + 1), so y ∈
⋃

B, so y ∈ b.

3. Suppose a ⊆ c, c transitive.

We prove by induction on n that F (n) ⊆ c.

F (0) = a ⊆ c.

Suppose F (n) ⊆ c.

We want to show that F (n+1) ⊆ c, so suppose x ∈ F (n+1), ie x ∈
⋃

F (n).
Then for some y ∈ F (n), x ∈ y. Thus x ∈ y ∈ F (n) ⊆ c, so x ∈ y ∈ c, so
x ∈ c, since c is transitive, as required.

Thus, by induction, ∀n ∈ ωF (n) ⊆ c, so
⋃
{F (n) : n ∈ ω} ⊆ c, ie. b ⊆ c,

as required.

¤

Recursion on ∈.

Theorem 3.1.6 (Requires Foundation—ie. assume ZF) For ψ(x) any formula
of LST (with parameters) if ∀x(∀y ∈ x ψ(y) → ψ(x)), then ∀xψ(x). (The
hypothesis trivially implies ψ(∅).)

Proof. Suppose ∀x(∀y ∈ x ψ(y) → ψ(x)), but that there is some set a such
that ¬ψ(a). Then a 6= ∅. Let b = TC(a), so a ⊆ b, and hence b 6= ∅. Let
C = {x ∈ b : ¬ψ(x)}. Then C 6= ∅, since otherwise we would have ∀x ∈ b ψ(x),
hence ∀x ∈ a ψ(x) (since a ⊆ b), and hence ψ(a), contradiction.

By foundation there is some d ∈ C such that d ∩ C = ∅, ie. d ∈ b, ¬ψ(d),
but ∀x ∈ d x ∈ b (since b is transitive) and x /∈ C. But this means ∀x ∈ d ψ(x),
so ψ(d)—contradiction. ¤

Our present aim is to prove that if ZF∗ is consistent then so is ZF—so we
won’t use 3.1.6. Instead we find another generalization of induction.
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Definition 3.1.7 Suppose that a is a set and R is a binary relation on a. Then
R is called a well-ordering of a if

1. R is a total ordering of a.

2. If b is a non-empty subset of a, then b contains an R-least element.
ie. ∃x ∈ b∀y ∈ b(y = x ∨ xRy).

Remark: AC iff every set is well-orderable.

Definition 3.1.8 Suppose that R1 is a total order of a, and R2 is a total order
of b. Then we say that 〈a,R1〉 is order-isomorphic to 〈b,R2〉, written 〈a,R1〉 ∼
〈b,R2〉, if there is a bijective function f : a → b such that ∀x, y ∈ a(x < y ↔
f(x) < f(y)).

Definition 3.1.9 We say x is an ordinal, On(x), or x ∈ On, if

1. x is transitive, and

2. ∈ is a well-ordering of x.

We usually use α, β, etc., for ordinals.
On is a class.

Theorem 3.1.10 (Enderton)

1. If R is a well-order of the set a, then there is a unique ordinal α such that
〈a,R〉 ∼ 〈α,∈〉.

2. ∅ ∈ On. (Write ∅ = 0.)

3. α ∈ On → α+1 ∈ On (so all natural numbers are ordinals, by induction).

4. If a is a set and a ⊆ On, then
⋃

a ∈ On. (Hence ω ∈ On.)

5. If α, β ∈ On, either α = β, α ∈ β, or β ∈ α, and exactly one occurs.

6. If α, β, γ ∈ On, and α ∈ β and β ∈ γ, then α ∈ γ.

7. If α, β ∈ On, α ⊆ β iff α ∈ β or α = β.

8. If α ∈ On and a ∈ α, then a ∈ On.

(Note that (4) implies that On is not a set.)

Theorem 3.1.11 (Which is required to prove the above.) Suppose that φ(x) is a
formula of LST, such that ∀α ∈ On(∀β ∈ α φ(β) → φ(α)). Then ∀α ∈ On φ(α).

Proof. Exercise¤
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Theorem 3.1.12 (Well-ordering of the class of ordinals) Suppose U is a class
and U ⊆ On, U 6= ∅. Then there is an ordinal α ∈ U such that ∀β ∈ U(β =
α ∨ α ∈ β).

Definition 3.1.13 (1) An ordinal α is called a successor ordinal if α = β∪{β}
for some (necessarily unique) ordinal β. (Write α = β + 1.)

(2) An ordinal α is called a limit ordinal if α 6= ∅ and α is not a successor
ordinal.

Theorem 3.1.11 is often applied in the following way:
To prove ∀α ∈ Onφ(α):

1. Show φ(0)

2. Show ∀α(φ(α) → φ(α + 1))

3. Show ∀α < δ φ(α) → φ(δ), for limit δ

Our aim from here on is to construct the Vα hierarchy.

Theorem 3.1.14 (Definition by recursion on On) Suppose F : V ∗ → V ∗ is a
class term, and a ∈ V ∗. Then there is a unique class term G : On → V ∗ such
that

1. G(0) = a

2. G(α + 1) = F (G(α))

3. G(δ) =
⋃

α∈δ for δ a limit.

Proof.Proof Let φ(g, α) be the formula of LST expressing:
”g is a function with domain α + 1 such that ∀β < α g(β + 1) = F (g(β))

and if β is a limit g(β) =
⋃
{g(α) : α < β} and g(0) = a”.

((*) Note that if φ(g, α) and β ≤ α, then φ(g↾β + 1, β).)

Lemma 3.1.15 ∀α ∈ On∃!g φ(gα).

Proof. Induction on α.
α = 0: Clearly g = {〈0, a〉} is the only set satisfying φ(g, 0).
Suppose true for α. Let g be the unique set satisfying φ(g, α). (Note g :

α+1 → V ∗.) Certainly g∗ = g∪{〈α+1, F (g(α))〉} satisfies φ(g∗, α+1). If g′ also
satisfied φ(g′, α + 1), then φ(g′↾α + 1, α) holds, so by the inductive hypothesis
g = g′↾α + 1. But φ(g′, α + 1) implies g′(α + 1) = F (g′(α)) = F (g(α)). So
g′ = g ∪ {〈α + 1, F (g(α))〉} = g∗, as required.

Suppose δ is a limit and ∀α < δ∃!g φ(g, α). For given α < δ let the unique
g be gα. Notice that S = {gα : α < δ} is a set by Replacement. But α1 < α2

implies gα1
= gα2

↾α1 + 1. Let g∗ =
⋃

S. Then g∗ is a function with domain
{α : α < δ} = δ, and ∀α < δ g∗(α + 1) = F (g∗(α)) and if β is a limit < δ, then
g∗(β) =

⋃
{g∗(α) : α < β} and g∗(0) = a. (Since for any α < δ, g∗ coincides
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with gα on α+1, and the gα’s satisfy the condition by the inductive hypothesis.)
Further g∗ is the only such function by (*).

Now define g = g∗ ∪ {〈δ,
⋃
{g∗(α) : α < δ}〉}. Then g is unique such that

φ(g, δ).
Now set G = {〈x, α〉 : ∃g(φ(g, α) ∧ g(α) = x)).
Then G satisfies the required conditions since by the lemma for each α ∈ On,

G↾α + 1 is the unique g such that φ(g, α).
We get uniqueness of G by induction. ¤

Theorem 3.1.16 Suppose F : V ∗ → V ∗ and H : V ∗ → V ∗ are class terms.
Then there is a unique class term G : V ∗ × On → V ∗ such that

1. G(x, 0) = H(x)

2. G(x, α + 1) = F (x,G(x, α))

3. G(x, δ) =
⋃

α<δ G(x, α) for δ a limit.

Some applications:

Definition 3.1.17 Ordinal addition: Set F (x, y) = y∪{y}, H(x) = x. We get
G such that

1. G(x, 0) = x

2. G(x, α + 1) = G(x, α) ∪ {G(x, α)}

3. G(x, δ) =
⋃

α<δ G(x, α).

Suppose α, β ∈ On. Write α + β for G(α, β). Then:

1. α + 0 = α

2. α + (β + 1) = (α + β) + 1

3. α + δ =
⋃

β<δ α + β.

Definition 3.1.18 Ordinal multiplication:

1. α.0 = 0 (So H(x) = 0)

2. α.(β + 1) = α.β + α (So F (x, y) = y + x)

3. α.δ =
⋃

β<δ α.β.



Chapter 4

The Cumulative Hierarchy

and the consistency of the

Axiom of Foundation

4.1

We apply Theorem 3.1.14 with a = ∅ and F (x) = Px, to get V : On → V ∗

defined by

1. V (0) = ∅

2. V (α + 1) = PV (α), and

3. V (δ) =
⋃

α<δ V (α) for δ a limit.

We write Vα for V (α). Each Vα is a set and we also write V for the class
{x : ∃α ∈ Onx ∈ Vα}“=”

⋃

α∈On Vα.

Theorem 4.1.1 For each α ∈ On,

1. Vα is transitive,

2. Vα ⊆ Vα+1,

3. α ∈ Vα+1.

Proof. Simultaneous induction on α.
α = 0 V0 = ∅, which is transitive. V0 ⊆ V1, and 0 = ∅ ∈ {∅} = V1.
Suppose true for α.
(1) Suppose x ∈ y ∈ Vα+1. Vα+1 = PVα, so x ∈ y ⊆ Vα, so x ∈ Vα. Since

Vα ⊆ Vα+1 by the inductive hypothesis, we get x ∈ Vα+1 as required.
(2) Suppose x ∈ Vα+1. Then x ⊆ Vα. But Vα ⊆ Vα+1 by the inductive

hypothesis, so x ⊆ Vα+1. Hence x ∈ V(α+1)+1, as required.

19
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(3) α ∈ Vα+1 by hypothesis. So α ⊆ Vα+1, since Vα+1 is transitive. Thus
α ∪ {α} ⊆ Vα+1. Hence α + 1 = α ∪ {α} ∈ V(α+1)+1, as required.

—Hence the result is true for α + 1.
Suppose δ a limit and (1), (2) and (3) are true for all α < δ.
(1) Suppose x ∈ y ∈ Vδ =

⋃

α<δ Vα. Then x ∈ y ∈ Vα for some α < δ. So
x ∈ Vα by ind hyp. But Vα ⊆ Vδ, so x ∈ Vδ.

(2) Suppose x ∈ Vδ. Since y ∈ x ∈ Vδ → y ∈ Vδ, we have x ⊆ Vδ, so
x ∈ Vδ+1. Thus Vδ ⊆ Vδ+1.

(3) Now for all α < δ, α ∈ Vα+1, by the inductive hypothesis. So ∀α <
δ α ∈ Vδ (since Vα+1 ⊆ Vδ). Thus δ ⊆ Vδ (note δ = {α : α < δ}) and so
δ ∈ PVδ = Vδ+1, as required. ¤

Corollary 4.1.2 (1) V is a transitive class (ie. x ∈ y ∈ V → x ∈ V ) containing
all the ordinals.

(2) ∀α < β Vα ⊆ Vβ.

Theorem 4.1.3 (V,∈) ² ZF.

Proof. (Note that (V,∈) is a substructure of (V ∗,∈), so for a, b ∈ V , (V,∈
) ² a ∈ b iff a ∈ b, and (V,∈) ² a = b iff a = b.)

A1. Suppose x, y ∈ V , and 〈V,∈〉 ² ∀t(t ∈ x ↔ t ∈ y) (*). We must show
〈V,∈〉 ² x = y, ie x = y. Suppose x 6= y. Say a ∈ x, a /∈ y. Since a ∈ x ∈ V
we have a ∈ V (by Corollary 4.1.2). But by (*), ∀t ∈ V , t ∈ x ↔ t ∈ y. In
particular a ∈ x ↔ a ∈ y—contradiction.

So x = y.
A2. We must show 〈V,∈〉 ² ∃x∀y y /∈ x. Since ∅ ∈ V , we have ∅ ∈ V , and

clearly ∀y ∈ V, /∈ ∅.
A3. Suppose a, b ∈ V . We must show 〈V,∈〉 ² ∃z∀t(t ∈ z ↔ (t = a∨t = b)).

Let c = {a, b}. Now by 4.1.2 (ii), there is some α such that a, b ∈ Vα. So c ⊆ Vα,
so c ∈ Vα+1, so c ∈ V . It remains to show ∀t ∈ V (t ∈ c ↔ (t = a ∨ t = b)),
which is clear since this is true ∀t ∈ V ∗.

A4. 〈V,∈〉 ² Unions—exercise.
A7. Power Set Suppose a ∈ V . We must show 〈V,∈〉 ² ∃y∀t(t ∈ y ↔ ∀z(z ∈

t → z ∈ a)).
Now suppose a ∈ Vα.
Exercise: ∀α ∈ On, if b ∈ a ∈ Vα, then b ∈ Vα.
It follows that ∀b ∈ P(a), b ∈ Vα. Thus P(a) ⊆ Vα, so P(a) ∈ Vα+1. So

P(a) ∈ V . Let c = P(a).
We show 〈V,∈〉 ² ∀t(t ∈ c ↔ ∀z(z ∈ t → z ∈ a)).
So suppose t ∈ V .
⇒): If 〈V,∈〉 ² t ∈ c, then t ∈ c, so t ⊆ a, ie. ∀z ∈ V ∗(z ∈ t → z ∈ a), thus

∀z ∈ V (z ∈ t → z ∈ a).
⇐): Suppose 〈V,∈〉 ² ∀z(z ∈ t → z ∈ a) (*) (ie. 〈V,∈〉 ² t ⊆ a). We show

that really, t ⊆ a. Suppose d ∈ t. Since t ∈ V , we have d ∈ V (by 4.1.2 (i)).
Hence, by (*), d ∈ a. Thus t ⊆ a, so t ∈ c, so 〈V,∈〉 ² t ∈ c as required.

A8. Infinity Exercise (Note: ω ∈ Vω+1, so ω ∈ V ).
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A9. Foundation Suppose a ∈ V , a 6= ∅. We must find b ∈ a such that
b ∩ a = ∅.

[Since then b ∈ V , by transitivity, and 〈V,∈〉 ² ∀y ∈ by /∈ a.]
Let x ∈ a. Then x ∈ V , so x ∈ Vα for some α. This shows ∃α ∈ On, a∩Vα 6=

∅. Choose β minimal such that a∩Vβ 6= ∅. Then β is a successor ordinal since,
for δ a limit, a ∩ Vδ = a ∩

⋃

α<δ Vα =
⋃

α<δ(a ∩ Vα), so if a ∩ Vδ 6= ∅, then
a ∩ Vα 6= ∅ for some α < δ.

Say β = γ + 1. Now choose b ∈ a ∩ Vβ .
We claim that b ∩ a = ∅. Suppose x ∈ a ∩ b. Now b ∈ Vβ , so b ⊆ Vγ , so

x ∈ Vγ . But x ∈ a, so a ∩ Vγ 6= ∅—a contradiction to the minimality of β.
A5. Separation Suppose φ(x1, . . . , xn, y) is a formula of LST and a1, . . . , an ∈

V , and u ∈ V . We want b ∈ V such that

〈V,∈〉 ² ∀y(y ∈ b ↔ (y ∈ u ∧ φ(a1, . . . , an, y))).

Definition 4.1.4 Relativization of formulas Suppose U is a class, say U =
{x : Φ(x)}, and φ(v1, . . . , vk) is a formula of LST. We define the formula
φU (v1, . . . , vk) (or φΦ(v1, . . . , vk)), which has the same free variables as φ, as
follows (by recursion on φ):

1. If φ is vi = vj or vi ∈ vj, then φU is just φ.

2. If φ is ¬ψ, then φU is ¬ψU .

3. If φ is (ψ ∨ ψ′), then φU is (ψU ∨ (ψ′)U ).

4. If φ is ∀viψ, then φU is ∀vi(Φ(vi) → ψU ).

(We tacitly assume φ and Φ have no bound variables in common.)

Lemma 4.1.5 For any φ(v1, . . . , vk) and a1, . . . , ak ∈ U , 〈U,∈〉 ² φ(a1, . . . , ak)
iff φU (a1, . . . , ak).

Proof. Obvious. ¤

To return to the proof of A5 in 〈V,∈〉: Suppose u ∈ Vα. Let b = {y ∈ u :
φV (a1, . . . , ak, y)}. Then b ⊆ u ∈ Vα, so b ∈ Vα (by an exercise), so b ∈ V .

Suppose y ∈ V .
We want to show 〈V,∈〉 ² y ∈ b ↔ (y ∈ u ∧ φ(a1, . . . , an, y)).
⇒): Suppose y ∈ b. Then y ∈ u, and φV (a1, . . . , an, y). Hence, by lemma

4.1.5, 〈V,∈〉 ² y ∈ u ∧ φ(a1, . . . , an, y).
⇐): Suppose 〈V,∈〉 ² y ∈ u∧φ(a1, . . . , an, y). Then y ∈ u and φV (a1, . . . , an, y)

(by 4.1.5), so y ∈ b, as required.
A6. Replacement Suppose φ(x, y) is a formula of LST (possibly involving

parameters from V ).
Suppose 〈V,∈〉 ² ∀x, y, y′((φ(x, y) ∧ φ(x, y′)) → y = y′).

Let ψ(x, y) be

V (x)
︷ ︸︸ ︷

x ∈ V ∧

V (y)
︷ ︸︸ ︷

y ∈ V ∧φV (x, y). [Note V (x) has no parameters.]
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Then we have (in V ∗) ∀x, y, y′((ψ(x, y) ∧ ψ(x, y′)) → y = y′), by lemma
4.1.5.

Let s ∈ V .
Hence there is a set z such that

∀y(y ∈ z ↔ ∃x ∈ sψ(x, y)) (*)

(by replacement in V ∗). We want to show z ∈ V .
Now by (*), if y ∈ z, then ∃x ∈ sψ(x, y), so ∃x ∈ s(x ∈ V ∧y ∈ V ∧φV (x, y),

so y ∈ V .
Thus for each y ∈ z, ∃α ∈ On, y ∈ Vα.
Let χ(u, v) be “u ∈ z ∧ v is the least ordinal such that u ∈ Vv”.
Then by replacement in V ∗, there is a set S such that

∀v(∃u ∈ z(χ(u, v)) ↔ v ∈ S).

Clearly S is a set of ordinals, so
⋃

S is an ordinal, β say.
Clearly ∀y ∈ z, y ∈ Vβ . Hence z ⊆ Vβ , so z ∈ Vβ+1, so z ∈ V .
We must show 〈V,∈〉 ² ∀y(y ∈ z ↔ ∃x ∈ sφ(x, y)).
⇒): So suppose y ∈ V and y ∈ z.
By (*), ∃x ∈ sψ(x, y), ie. ∃x ∈ s(x ∈ V ∧ y ∈ V ∧φV (x, y)), so 〈V,∈〉 ² ∃x ∈

sφ(x, y).
⇐): Conversely, if y ∈ V , and 〈V,∈〉 ² ∃x ∈ sφ(x, y), then ∃x ∈ S(x ∈

V ∧ φV (x, y)), so ∃x ∈ s(x ∈ V ∧ y ∈ V ∧ φV (x, y)), ie ∃x ∈ sψ(x, y), so by (*),
y ∈ z. ¤

Corollary 4.1.6 If ZF∗ is consistent, then so is ZF.

Proof. If σ is an axiom of ZF, we have shown that ZF∗ ⊢ σV . Hence if
σ1, σ2, . . . , σk were a proof of a contradiction from ZF, then (roughly) σV

1 , . . . , σV
k

could be converted into one from ZF∗. ¤

From now on we assume Foundation, and hence may assume (exercise) that
ZF=ZF∗.
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Lévy’s Reflection Principle

5.1

Theorem 5.1.1 (LRP) (ZF—for each individual χ)
Suppose W̃ : On → V is a class term, and write Wα for W̃ (α). Suppose W̃

satisfies:

1. α < β → Wα ⊆ Wβ (∀α, β ∈ On)

2. Wδ =
⋃

α∈δ Wα for all limit ordinals δ.

Let W =
⋃

α∈On Wα (= {x : ∃α ∈ On, x ∈ Wα}, so W is a class; each Wα

is a set.)
Suppose χ(v1, . . . , vn) is a formula of LST (without parameters). Then, for

any α ∈ On, there is β ∈ On such that β ≥ α, and such that ∀a1, . . . an ∈ Wβ,
〈W,∈〉 ² χ(a1, . . . , an) iff 〈Wβ ,∈〉 ² χ(a1, . . . , an); ie. for all a1, . . . , an ∈ Wβ,
χW (a1, . . . , an) ↔ χWβ (a1, . . . , an).

Proof. For any formula φ of LST, by the collection of subformulas of φ, SF (φ),
we mean all those formulas that go into the building up of φ. Formally

1. SF (φ) = {φ} if φ is of the form x = y or x ∈ y;

2. SF (¬φ) = {¬φ} ∪ SF (φ);

3. SF (φ ∨ ψ) = {φ ∨ ψ} ∪ SF (φ) ∪ SF (ψ);

4. SF (∀xφ) = {∀xφ} ∪ SF (φ).

Clearly SF (φ) is a finite colleciton for any formula φ, and φ ∈ SF (φ).
Suppose now that S is any finite collection of formulas, which is closed under

taking subformulas—ie. if φ ∈ S, then SF (φ) ⊆ S.
Define TS = {β ∈ On : ∀χ ∈ S ∀a ∈ Wβ(χWβ (a) ↔ χW (a)}. (Abuse of

notation here.) (TS is a class since S is finite.)

23
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We must show that TS is unbounded in the ordinals. (LRP follows by taking
S = SF (χ).)

We first show.

Lemma 5.1.2 For any S as above, TS is a closed class of ordinals, ie. it con-
tains all its limits, ie. when X is a subset of TS, then supX ∈ TS.

Proof. We prove this by induction on the total number n of occurrences of
connectives in formulas of S. We write this n as #S.

If n = 0, then all formulas of S are of the form x = y or x ∈ y (for variables
x and y), so TS = On, so TS is definitely closed.

Now suppose that #S = n + 1. Let χ be a formula in S with maximal
number of connectives.

Let S′ = S \ {χ}. Clearly S′ is also closed under taking subformulas and
#S′ ≤ n. Also since S′ ⊆ S, we have TS′ ⊆ TS .

Let X ⊆ TS , a subset, and suppose X has no greatest element. Note that
X ⊆ TS′ , so supX ∈ TS′ by the inductive hypothesis.

We want to show that supX ∈ TS .
Case 1. χ is ¬ψ. Note ψ ∈ S′, so TS = TS′ . So supX ∈ TS .
Case 2. χ is ψ1 ∨ ψ2. Then again ψ1, ψ2 ∈ S′, so we can easily check

TS = TS′ , and the result follows by the inductive hypothesis.
Case 3. χ is ∀vn+1ψ(v1, . . . , vn, vn+1).
Then ψ(v1, . . . , vn, vn+1) ∈ S′. Let η = supX. Now since X has no greatest

element η is a limit ordinal, so Wη =
⋃

α<η Wα =
⋃

α∈X Wα.
But by the inductive hypothesis we have for all φ ∈ S′, for all a ∈ Wη

φWη (a) ↔ φW (a) (*)

We clearly only have to show:

∀a ∈ Wη(χWη (a) ↔ χW (a)). (†)

Now since X ⊆ TS we have

∀β ∈ X ∀a ∈ Wβ (χWβ (a) ↔ χW (a)). (**)

Proof of ← in (†)
Suppose a ∈ Wη and χW (a). Thus

(∀vn+1ψ(a, vn+1))
W , ie. ∀vn+1 ∈ WψW (a, vn+1).

But Wη ⊆ W , so ∀vn+1 ∈ Wη ψW (a, vn+1). Let an+1 ∈ Wη. Then ψW (a, an+1).
But ψ ∈ S′ (since ψ is a subformula of χ different from χ), so by (*) ψWη (a, an+1).
Since this holds for any an+1 ∈ Wη we have ∀vn+1 ∈ Wη ψWη (a, vn+1), ie. χWη

as required.
Proof of → in (†)
Suppose a ∈ Wη and χWη (a). Since Wη =

⋃

α∈X Wα we have a ∈ Wβ

for some β ∈ X. Now ∀vn+1 ∈ Wη ψWη (a, vn+1). Since Wβ ⊆ Wη, we have
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∀vn+1 ∈ Wβ ψWη (a, vn+1). Now let an+1 ∈ Wβ . Then ψWη (a, an+1). Hence
by (*), ψW (a, an+1). But β ∈ X ⊆ TS′ (and ψ ∈ S′), so ψWβ (a, an+1). Since
an+1 ∈ Wβ was arbitrary, we have ∀vn+1 ∈ Wβ ψWβ (a, vn+1), ie. χWβ (a). Hence
by (**), χW (a) as required.¤

To complete the proof of the theorem we now show that
∀α ∈ On ∃β ∈ On (β > α ∧ β ∈ TS).
The proof is again by induction on #S, and the only difficult case is when

χ is ∀vn+1ψ(v, vn+1) and S′ = S \ {χ}, S′ closed under taking subformulas.
By our inductive hypothesis we have

∀α∃β > αβ ∈ TS′ . (***)

It remains to show that given any α ∈ On,∃β > α β ∈ TS′ , such that ∀a ∈
Wβ(χWβ (a) ↔ χW (a). (For then such a β will be in TS .)

Let α ∈ On be given.
Now χ(v) is ∀vn+1ψ(v1, . . . , vn, vn+1).
Define the term f : On × V n → On so that ∀γ ∈ On∀a1, . . . , an ∈ V

f(γ, a1, . . . , an) is the least θ ∈ On such that θ > γ and ∃an+1 ∈ Wθ such that
¬ψW (a1, . . . , an, an+1), if such a θ exists.

Now define the term F : On → On so that ∀γ ∈ On F (γ) is the least θ ∈ TS′

such that θ > sup{f(γ, a1, . . . , an) : 〈a1, . . . , an〉 ∈ Wn
γ }. (This last thing is a

set by replacement since Wn
γ is. θ exists using (***).)

Notice that for all γ, F (γ) > γ, F (γ) ∈ TS′ , and if a1, . . . , an ∈ Wγ ,
∀vn+1 ∈ WF (γ) ψW (a1, . . . , an, vn+1) ⇒ ∀vn+1 ∈ WψW (a1, . . . , an, vn+1) (††)
(For otherwise, ∃an+1 ∈ W¬ψW (a1, . . . , an, an+1), so for some minimal

η, ∃an+1 ∈ W η¬ψW (a1, . . . , an, an+1) (since W =
⋃

η∈On Wη), so F (γ) ≥

f(γ, a1, . . . , an) ≥ η, so ∃an+1 ∈ WF (γ)¬ψW (a1, . . . , an, an+1) since WF (γ) ⊇
Wη—contradiction.)

Now by the recursion theorem on ω define the function g : ω → On by

1. g(0) = F (α),

2. g(n + 1) = F (g(n));

let X = rang. Clearly X has no greatest element and X ⊆ TS′ . Let β = supX.
Since TS′ is closed (Lemma above), we have β ∈ TS′ . We also have β > α, and:

For all a1, . . . , an ∈ Wβ ,
if ∀vn+1 ∈ Wβ ψW (a1, . . . , an, vn+1), then ∀vn+1 ∈ WψW (a1, . . . , an, vn+1).
(****)
Proof. Suppose a1, . . . , an ∈ Wβ . Since Wβ =

⋃

γ∈X Wγ , we have a1, . . . , an ∈

Wγ , for some γ ∈ X. Suppose ∀vn+1 ∈ WβψW (a1, . . . , an, vn+1).
Since F (γ) ∈ X, and hence WF (γ) ⊆ Wβ , we have ∀vn+1 ∈ WF (γ)ψ

W (a1, . . . , an, vn+1).
Hence by (††) we have ∀vn+1 ∈ WψW (a1, . . . , an, vn+1), as required. ¤

Now show that (****) implies β ∈ TS as required (exercise, Problem sheet
4). ¤
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Chapter 6

Gödel’s Constructible

Universe

6.1

For any set a and n ∈ ω we define na to be {f : f : n → a}, and <ωa =
⋃

n∈ω
na.

(Exercise: this is a set.)
We shall define the class term Def : V → V so that

Def(A) = {X ⊆ A : X is definable from A},

where X is definable from A if there is formula φ(x1, . . . , xn, x) of LST and there
are elements a1, . . . , an of A such that X = {a ∈ A : 〈A,∈〉 ² φ(a1, . . . , an, a)}.

WARNING: it is difficult to prove that Def(A) is a class. We postpone this
till chapter 8.

In order to construct Def we shall construct a class term G : ω×V ×V → V
such that

∀m ∈ ω ∀a, s ∈ V G(m,a, s) ⊆ a.

Further to each formula ψ(v0, . . . , vn−1, vn) of LST with free variables amongst
v0, . . . , vn (with n ≥ 1), there will be assigned a number m ∈ ω (m = ⌈ψ(v0, . . . , vn)⌉)
with the property that for all a, s ∈ V ,

G(m,a, s) = {b ∈ a : 〈a,∈〉 ² ψ(s(0), . . . , s(n−1), b)} if s ∈ <ωa and dom s ≥
n and ∅ otherwise.

We then define the class term Def : V → V by

Def(a) = {G(m,a, s) : m ∈ ω, s ∈ <ωa}.

Thus Def(a) consists of all the definable (with parameters) subsets of the struc-
ture 〈a,∈〉.

Definition 6.1.1 (The constructible hierarchy)
We define the class term L : On → V (writing Lα for L(α)) by recursion on

On as follows:

27
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1. L0 = ∅;

2. Lα+1 = Def(Lα);

3. Lδ =
⋃

α<δ Lα for limit δ.

L is called the Constructible Universe.
Throughout we assume ZF holds in V .

Lemma 6.1.2 For all α, β ∈ On:

1. α < β → Lα ⊆ Lβ;

2. α < β → Lα ∈ Lβ;

3. Lβ is transitive;

4. Lβ ⊆ Vβ;

5. On ∩ Lβ = β.

Proof. Fix α. We prove (1)–(5) (simultaneously) by induction on β.
β = 0: trivial.
The successor case: Suppose (1)–(5) true for β.
(1) Suffices to show Lβ ⊆ Lβ+1. Suppose x ∈ Lβ . Then x ⊆ Lβ (by IH(3)).

Let s = {〈0, x〉; then s ∈ <ωLβ and doms = 1. Then A = G(⌈v1 ∈ v0⌉, Lβ , s) ∈
Def(Lβ) = Lβ+1.

Also A = {b ∈ Lβ : 〈Lβ ,∈〉 ² b ∈ s(0)} = {b ∈ Lβ : b ∈ x} = x (since
x ⊆ Lβ).

Thus x ∈ Lβ+1 as required.
(2) Suffices to show (by (1)) that Lβ ∈ Lβ+1. (Since if α < β then Lα ∈ Lβ

(by IH) and Lβ ⊆ Lβ+1 (by (1)).
Must show that Lβ ∈ Def(Lβ).
Let s = ∅. Then G(⌈v1 = v0⌉, Lβ , s) = {b ∈ Lβ : 〈Lβ ,∈〉 ² b = b} = Lβ , so

Lβ ∈ Def(Lβ), as required.
(3) If x ∈ Lβ+1, then x ⊆ Lβ . But Lβ ⊆ Lβ+1, by (1), so x ⊆ Lβ+1. Thus

Lβ+1 is transitive.
(4) By IH Lβ ⊆ Vβ .
Also x ∈ Lβ+1 → x ⊆ Lβ → x ⊆ Vβ → x ∈ PVβ = Vβ+1.
Thus Lβ+1 ⊆ Vβ+1.
(5) By IH On ∩ Lβ = β.
Suppose x ∈ On ∩ Lβ+1. Then x ∈ On and x ⊆ Lβ .
But every member of x is an ordinal, so x ⊆ Lβ ∩On, so x ⊆ β. Thus either

x ∈ β or x = β. In either case x ∈ β ∪ {β} = β + 1. Thus On ∩ Lβ+1 ⊆ β + 1.
Suppose x ∈ β+1. Then either x ∈ β, in which case x ∈ On∩Lβ ⊆ On∩Lβ+1

(by (1)), or x = β. So it remains to show β ∈ Lβ+1.
Let s = ∅.
Then A = G(⌈On(v0)⌉, Lβ , s) = {b ∈ Lβ : 〈Lβ ,∈〉 ² On(b)}, and A ∈

Def(Lβ) = Lβ+1. We show A = β.



6.1. 29

But On(v0) is an absolute formula, that is has the same meaning in any
transitive class (exercise).

Thus ∀b ∈ Lβ , 〈Lβ ,∈〉 ² On(β) iff b ∈ On.
Thus A = Lβ ∩ On = β by IH, as required.
The Limit Step Suppose δ > 0 is a limit ordinal and (1)–(5) hold for all

β < δ. Since Lδ =
⋃

β<δ Lβ , (1)–(5) for δ are all easy. ¤

Lemma 6.1.3 For all n ∈ ω, Ln = Vn.

Proof. By induction on n.
For n = 0, this is clear.
Suppose now that Ln = Vn.
Now Ln+1 ⊆ Vn+1 by 6.1.2.
Suppose x ∈ Vn+1. Then x ⊆ Vn, so x is finite. Also x ⊆ Ln by IH. Say

x = {a0, . . . , ak−1} (k ∈ ω), so that a0, . . . , ak−1 ∈ Ln.
Let s = {〈0, a0〉, . . . , 〈k − 1, ak−1〉}, so s ∈ kLn.
Let A = G(⌈(vk = v0 ∨ · · · ∨ vk = vk−1⌉, Ln, s) = {b ∈ Ln : 〈Ln,∈〉 ² (b =

a0 ∨ · · · ∨ b = ak−1)} = {a0, . . . , ak−1} = x.
Thus x ∈ Def(Ln) = Ln+1.
Thus Vn+1 ⊆ Ln+1.
So Vn+1 = Ln+1. ¤

Lemma 6.1.4 Suppose a, c ∈ L. Then

1. {a, c} ∈ L.

2.
⋃

a ∈ L.

3. Pa ∩ L ∈ L.

4. ω ∈ L.

Proof. (1) Suppose a, c ∈ Lα. Define s = {〈0, a〉, 〈1, c〉}, so s ∈ <ωLα.
Then Lα+1 ∋ G(⌈v2 = v0∨v2 = v1⌉, Lα, s) = {b ∈ Lα : 〈Lα,∋〉 ² b = a∨ b =

c} = Lα ∩ {a, c} = {a, c}.
So {a, c} ∈ Lα+1 ⊆ L.
(2) Suppose a ∈ Lα. Let s = {〈0, a〉}. Then Lα+1 ∋ G(⌈∃v2 ∈ v0(v1 ∈

v2)⌉, Lα, s) = {b ∈ Lα : 〈Lα,∈〉 ² ∃v2 ∈ a(b ∈ v2)} = A, say.
We claim that A =

⋃
a.

Suppose that b ∈ A.
Then 〈Lα,∈〉 ² ∃v2 ∈ a(b ∈ v2).
Say d ∈ Lα is such that 〈Lα,∈〉 ² d ∈ a ∧ b ∈ d.
Then d ∈ a ∧ b ∈ d, so b ∈

⋃
a.

Conversely, suppose b ∈
⋃

a. Then for some d ∈ a, b ∈ d. But Lα is
transitive, and a ∈ Lα, so d ∈ Lα, and hence b ∈ Lα.

So 〈Lα,∈〉 ² d ∈ a ∧ b ∈ d. Hence 〈Lα,∈} ² ∃v2 ∈ a(b ∈ v2) (and b ∈ Lα) so
b ∈ A as required.
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Thus
⋃

a ∈ Lα+1 ∈ L.
(3) Let f : Pa → On be defined so that f(x) is the least α such that x ∈ Lα

if there is one, f(x) = 0 otherwise.
Then by replacement ranf is a set, and hence ∃β ∈ On such that β > α for

all α ∈ ranf .
Clearly Pa ∩ L ⊆ Lβ (using 6.1.2 (1)).
We may also suppose that a ∈ Lβ .
Let s = {〈0, a〉}.
Then Lβ+1 ∋ G(⌈∀v2 ∈ v1(v2 ∈ v0)⌉, Lβ , s) = {b ∈ Lβ : 〈Lβ ,∈〉 ² ∀v2 ∈

b(v2 ∈ a)} = A, say.
Suffices to show A = Pa ∩ L.
Suppose b ∈ A. Then b ∈ Lβ (so b ∈ L) and 〈Lβ ,∈〉 ² ∀v2 ∈ b(v2 ∈ a).
Now suppose d ∈ b. Then d ∈ Lβ since Lβ is transitive. Hence 〈Lβ ,∈〉 ² d ∈

b ∧ d ∈ a, so d ∈ a.
Hence b ⊆ a, so b ∈ Pa ∩ L. Thus A ⊆ Pa ∩ L.
Conversely suppose b ∈ Pa ∩ L. Then b ∈ Lβ .
Also ∀v2 ∈ b(v2 ∈ a). Hence ∀v2 ∈ Lβ(v2 ∈ b → v2 ∈ a), so 〈Lβ ,∈〉 ² ∀v2 ∈

b(v2 ∈ a).
So b ∈ A.
Hence Pa ∩ L = A. ¤

It is now easy to check that

Corollary 6.1.5 Extensionality, empty-set, pairs, unions, power-set are all
true in L.

Lemma 6.1.6 〈L,∈〉 ² separation.

Proof. Suppose u ∈ L, and a0, . . . , an ∈ L. Say u, a0, . . . , an ∈ Lα. Let
φ(v0, . . . , vn+1) be a formula of LST. By Lévy’s Reflection Principle, there is
some β ≥ α such that ∀c, c1, . . . , cn+1 ∈ Lβ

〈Lβ ,∈〉 ² (c ∈ cn+1∧φ(c0, . . . , cn, c)) ⇔ 〈L,∈〉 ² (c ∈ cn+1∧φ(c0, . . . , cn, c)). (∗)

Let ψ(v0, . . . , vn+2) = (vn+2 ∈ vn+1 ∧ φ(v0, . . . , vn, vn+2).
Let s = {〈0, a0〉, . . . , 〈n, an〉, 〈n + 1, u〉}.
Then Lβ+1 ∋ G(⌈ψ(v0, . . . , vn+2)⌉, Lβ , s) = {b ∈ Lβ : 〈Lβ ,∈〉 ² ψ(a0, . . . , an, u, b)} =

{b ∈ Lβ : 〈Lβ ,∈〉 ² (b ∈ u ∧ φ(a0, . . . , an, b)} = A, say. (So A ∈ L.)
Sufficient to show 〈L,∈〉 ² ∀x(x ∈ A ↔ (x ∈ u ∧ φ(a0, . . . , an, x))).
⇒): Suppose x ∈ L and x ∈ A. Then x ∈ Lβ , and 〈Lβ , in〉 ² x ∈ u ∧

φ(a0, . . . , an, x).
By (*), 〈L,∈〉 ² x ∈ u ∧ φ(a0, . . . , an, x), as required.
⇐): Suppose x ∈ L, and x ∈ u ∧ phi(a0, . . . , an, x). Then x ∈ Lβ , since

x ∈ Lβ and Lβ is transitive. Hence, using (*), (Lβ ,∈〉 ² x ∈ u∧φ(a0, . . . , an, x),
so x ∈ A, as required. ¤

Lemma 6.1.7 〈L,∈〉 ² replacement.
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Proof. Suppose a0, . . . , an ∈ L, a = 〈a0, . . . , an〉, u ∈ L, φ(x, y, z) a formula of
LST, and 〈L,∈〉 ² ∀z, y, y′((φ(a, z, y) ∧ φ(a, z, y′)) → y = y′)

︸ ︷︷ ︸

σ

.

Now choose β so large that a0, a1, . . . , an, u ∈ Lβ , and such that (by LRP) for
all z ∈ Lβ 〈L,∈〉 ² σ∧∃y(φ(a, z, y)∧z ∈ u) ⇔ 〈Lβ ,∈〉 ² σ∧∃y(φ(a, z, y)∧z ∈ u),
and for all c, d ∈ Lβ , 〈L,∈〉φ(a, c, d) iff 〈Lβ ,∈〉 ² φ(a, c, d).

Now let A = {b ∈ Lβ : 〈Lβ ,∈〉 ² ∃z ∈ u(φ(a, z, b)}, so A ∈ Lβ+1.
Then, as in the proof of separation, 〈L,∈〉 ² ∀z ∈ u(∃yφ(a, z, y) ↔ ∃y ∈

A(φ(a, z, y)), as required. ¤

Lemma 6.1.8 〈L,∈〉 ² Foundation.

Proof. Suppose a ∈ L. Choose b ∈ V such that b ∈ a ∧ b ∩ a = ∅. Since L is
transitive, b ∈ L and clearly 〈L,∈〉 ² b ∈ a ∧ b ∩ a = ∅. ¤

Theorem 6.1.9 〈L,∈〉 ² ZF.
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Chapter 7

Absoluteness

7.1

Definition 7.1.1 The Σ0-formulas of LST are defined as follows:

1. x ∈ y, x = y, ¬x ∈ y, ¬x = y are Σ0-formulas for any variables x and y.

2. If ψ, φ are Σ0-formulas, so are ψ ∧ φ, ψ ∨ φ, ∀x ∈ y φ and ∃x ∈ y φ
(where x and y are distinct variables).

3. Nothing else is a Σ0 formula.

Lemma 7.1.2 If φ is a Σ0 formula, then ¬φ is logically equivalent to a Σ0

formula.

Proof. Easy induction on φ. Note that ¬∀x ∈ y φ is logically equivalent to
∃x ∈ y¬φ. ¤

Lemma 7.1.3 If φ(x1, . . . , xn) is a Σ0-formula and U1 and U2 are transitive
classes such that U1 ⊆ U2, then for all a1, . . . , an ∈ U1,

〈U,∈〉 ² φ(a1, . . . , an) ⇔ 〈U2,∈〉 ² φ(a1, . . . , an).

We say φ is absolute between U1 and U2.

Proof. Exercise—induction on φ. ¤

Definition 7.1.4 The Σ1-formulas of LST are defined as follows:

1. x ∈ y, x = y, ¬x ∈ y, ¬x = y are Σ1-formulas for any variables x and y.

2. If ψ, φ are Σ1-formulas, so are ψ ∧ φ, ψ ∨ φ, ∀x ∈ y φ and ∃x ∈ y φ
(where x and y are distinct variables), and ∃x φ.

3. Nothing else is a Σ1 formula.

33
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Remark 7.1.5 Note that every Σ0 formula is Σ1.

Lemma 7.1.6 If φ(x1, . . . , xn) is a Σ1-formula, and U1 and U2 are transitive
classes with U1 ⊆ U2, then for all a1, . . . , an ∈ U1

〈U1,∈〉 ² φ(a1, . . . , an) ⇒ 〈U2,∈〉 ² φ(a1, . . . , an).

(ie. φ is preserved up or is upward absolute between U1 and U2.)

Definition 7.1.7 (1) A formula φ(x) is called ΣZF
0 (respectively ΣZF

1 ) if there
is a Σ0 (or Σ1) formula ψ(x) such that ZF⊢ ∀x(φ(x) ↔ ψ(x)).

(2) A formula φ is called ∆ZF
1 if φ and ¬φ are ΣZF

1 .
(3) Suppose n ∈ ω and F : V n → V is a class term. Then F is called ∆ZF

1

if the formula φ(x1, . . . , xn, xn+1) defining F (x1, . . . , xn) = xn+1 is ∆ZF
1 , and

if ZF proves that F is a class term.

Remark 7.1.8 We need only verify that φ in part (3) is ΣZF
1 , since ¬φ is ΣZF

1

thus:

ZF ⊢ ∀x1, . . . , xn, xn+1(¬φ(x1, . . . , xn, xn+1) ↔ ∃y(φ(x1, . . . , xn, y)∧¬y = xn+1))

—and the bit on the right is ΣZF
1 if φ is.

Remark 7.1.9 Every ΣZF
0 formula is ∆ZF

1 by 7.1.2 and 7.1.5.

Theorem 7.1.10 Suppose φ(x1, . . . , xn) is ∆ZF
1 and U1 and U2 are transitive

classes such that U1 ⊆ U2 and 〈Ui in〉 ² ZF (i = 1, 2). Then for all a1, . . . , an ∈
U1,

〈U,∈〉 ² φ(a1, . . . , an) ⇔ 〈U2,∈〉 ² φ(a1, . . . , an).

(ie. φ is ZF-absolute.)

Proof. Let ψ(x1, . . . , xn) be Σ1 such that ZF⊢ ∀x(φ(x) ↔ ψ(x) (*).
Then

〈U1,∈〉 ² φ(a) ⇒ 〈U1,∈〉 ² ψ(a) (*) and 〈U1,∈〉 ² ZF

⇒ 〈U2,∈〉 ² ψ(a) by 7.1.6

⇒ 〈U2,∈〉 ² φ(a) (*) and 〈U1,∈〉 ² ZF

(7.1)

Now let χ(x1, . . . , xn) be Σ1 such that ZF⊢ ∀x(¬φ(x) ↔ ψ(x) (*).
Then as above,

〈U1,∈〉 ² ¬φ(a) ⇒ 〈U1,∈〉 ² χ(a) (*) and 〈U1,∈〉 ² ZF

⇒ 〈U2,∈〉 ² χ(a) by 7.1.6

⇒ 〈U2,∈〉 ² ¬φ(a) (*) and 〈U1,∈〉 ² ZF

(7.2)

¤
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Theorem 7.1.11 The following formulas and class terms are all ΣZF
0 (and

hence ∆ZF
0 ):

1. x = y

2. x ∈ y

3. x ⊆ y

4. F (x1, . . . , xn) = {x1, . . . , xn} (for each n)

5. F (x1, . . . , xn) = 〈x1, . . . , xn〉 (for each n)

6. (where n ≥ 1 and 0 ≤ i ≤ n−1) F (x) = xi if x is an n-tuple 〈x0, . . . , xn−1〉,
∅ otherwise.

7. F (x, y) = x ∪ y.

8. F (x, y) = x ∩ y.

9. F (x) =
⋃

x.

10. F (x) =
⋂

x if x 6= ∅, F (x) = ∅ otherwise.

11. F (x, y) = x \ y.

12. x is an n-tuple.

13. x is an n-ary relation on y.

14. x is a function.

15. F (x) = domx if x is a function, ∅ otherwise.

16. F (x) = ranx if x is a function, ∅ otherwise.

17. F (x, y) = x[y] (= {x(t) : t ∈ y}) if x is a function, ∅ otherwise.

18. F (x, y) = x↾y if x is a function, ∅ otherwise.

19. F (x) = x−1 if x is a function, ∅ otherwise.

20. F (x) = x ∪ {x}.

21. x is transitive.

22. x is an ordinal.

23. x is a successor ordinal.

24. x is a limit ordinal.

25. x : y → z.

26. x : y ∼ z.
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27. x is a natural number.

28. x = ω.

29. x is a finite sequence of elements of y.

Proof. (Selections) (3) x ⊆ y ⇔ ∀z ∈ x(z ∈ y) which is Σ0.
Note that all the class terms F above are in ZF provably class terms, so we

only have to show that the statement F (x) = y can be put in Σ0 form.
(4) F (x1, . . . , xn) = y ⇔ x1 ∈ y ∧ x2 ∈ y ∧ . . . ∧ xn ∈ y ∧ ∀z ∈ y(z =

x1 ∨ . . . ∨ z = xn).
(5) F (x1, x2) = y ⇔ ∃z1 ∈ y∃z2 ∈ y(z1 = {x1} ∧ z2 = {x1, x2} ∧ ∀t ∈ y(t =

z1 ∨ t = z2)), which is Σ0 by (4).
(12) x is a 2-tuple iff ∃z1 ∈ x ∃x1 ∈ z1 ∃x2 ∈ z1 (x = 〈x1, x2〉), which is Σ0

by (5).
(13) x is a 2-ary relation on y iff ∀z ∈ x ∃y1 ∈ y ∃y2 ∈ y (z = 〈y1, y2〉),

which is Σ0 by (5).
(29) x is a natural number iff (x is an ordinal)∧(x is not a limit ordinal)∧(∀y ∈

x y is not a limit ordinal), which is Σ0 by (24), (26) and the fact that ΣZF
0 for-

mulas are closed under ¬. ¤

Lemma 7.1.12 Suppose F and G are ∆ZF
1 class terms. Then “F (x) = G(y)”

is ∆ZF
1 .

Proof. Let ψ(x, z) adn χ(y, t) be Σ1 formulas defining (in ZF) F (x) = y and
G(y) = t respectively. Then

F (x) = G(y) ⇔
︸︷︷︸

ZF

∃z(ψ(x, z) ∧ χ(y, z)),

which is Σ1, and

F (x) 6= G(y) ⇔
︸︷︷︸

ZF

∃z∃t(ψ(x, z) ∧ χ(y, t) ∧ ¬z = t),

which is Σ1.
Hence “F (x) = G(y)” is ∆ZF

1 . ¤

Theorem 7.1.13 Suppose F : V ×V → V is a ∆ZF
1 class term. Then the class

term G defined from F by recursion on On, ie:

1. G(0, x) = x

2. G(α + 1, x) = F (G(α, x), x) for all α ∈ On

3. G(δ, x) =
⋃

α<δ G(α, x) for all limit δ ∈ On

4. G(y, x) = ∅ for all y /∈ On
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is ∆ZF
1 .

Proof. As in the proof of 3.1.14 define φ(g, α, x) by

On(α) χ1

∧ g is a function χ2

∧ dom g = α ∪ {α} χ3

∧ g(0) = x χ4

∧ ∀β ∈ α ∃y1∃y2 (y1 = β ∪ {β} ∧ y2 = g(β) ∧ g(y1) = F (y2)) χ5

∧ ∀β ∈ α(β is a limit ordinal → g(β) =
⋃
{g(α) : α ∈ β}). χ6

(7.3)

χ1 is ΣZF
0 by 7.1.11 (24); χ2 is ΣZF

0 by (14); χ3 is by (15), (22) and 7.1.12;
χ4 can be rewritten as ∃y((∀z ∈ y (z 6= z) ∧ g(y) = x) so is ΣZF

1 by (17);
χ5 is ΣZF

1 by (22), (17) and the fact that F is ΣZF
1 , and using 7.1.12; χ6 is

ΣZF
1 by (26) and the fact that “g(β) =

⋃
{g(α) : α ∈ β}” is equivalent to

∃y∃z(y = g[β] ∧ z =
⋃

y ∧ g(β) = z), which is ΣZF
1 by (18), (9) and (17).

Hence φ(g, α, x) is ΣZF
1 .

Now recall from the proof of 3.1.14 that G can be defined by:

G(α, x) = y ⇔ ∃g(φ(g, α, x) ∧ g(α) = y) ∨ (¬On(α) ∧ y = ∅).

This shows G is ΣZF
1 , and hence ∆ZF

1 by 7.1.8. ¤

Corollary 7.1.14 Assuming the class term G (from the beginning of section
6) is ∆ZF

1 , then so is the class term L̄ : On → V . (Strictly L̄ : V → V , where
L̄(x) = ∅ if x /∈ On.)

Proof. By 7.1.13 it is sufficient to show Def is ∆ZF
1 . Recall that Def : V → V

is defined by
Def(a) = {G(m,a, s) : m ∈ ω, s ∈ <ωa}.

Hence Def(a) = y iff ∃w∃x(w = ω ∧ x = <ωa ∧ ∀m ∈ w ∀s ∈ x∃t ∈ y t =
G(m,a, s) ∧ ∀t ∈ y ∃m ∈ w ∃s ∈ x t = G(m,a, s)).

Now x = <ωa is ∆ZF
1 , so Def is ΣZF

1 by 7.1.11 (29), (30), (31), and because
G is.

Hence Def is ∆ZF
1 by 7.1.8. ¤

Definition 7.1.15 V=L is the sentence of LST: ∀x∃α(On(α)∧x ∈ L̄(α)) (writ-
ing Lα for L̄(α)).

Theorem 7.1.16 〈L,∈〉 ² V=L.

Proof. Suppose a ∈ L. We must show 〈L,∈〉 ² ∃α(On(α) ∧ a ∈ L̄(α)). Now
choose α such that a ∈ Lα, ie. 〈V,∈〉 ² a ∈ L̄(α).
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Let X be the set L̄(α) (ie. Lα). Then X ∈ Lα+1 by 6.1.2 (2). Hence X ∈ L.
Since 〈V,∈〉 ² a ∈ X we have 〈L,∈〉 ² a ∈ X. Now 〈V,∈〉 ² On(α) ∧X = L̄(α).
But the formula “x = L̄(y)” is ∆ZF

1 , and On(α) is ∆ZF
1 , so by 7.1.10 (since

α,X ∈ L),
〈L,∈〉 ² On(α) ∧ X = L̄(α) ∧ a ∈ X.

Hence 〈L,∈〉 ² ∃α∃x(On(α) ∧ x = L̄(α) ∧ a ∈ x), so 〈L,∈〉 ² ∃α(On(α) ∧ a ∈
L̄(α)), as required. ¤

Corollary 7.1.17 If ZF is consistent, so is ZF+V=L.

(Same argument as for Foundation.)
Later we’ll show ZF+V=L⊢AC, GCH.



Chapter 8

Gödel numbering and the

construction of Def

8.1

(Throughout, if we say “F : U1 × · · · × Un → V is a ∆ZF
1 term” we mean

that the classes U1, . . . , Un are ∆ZF
1 (ie. defined by ∆ZF

1 formulas) and that
“F (x1, . . . , xn) = y” can be expressed by a Σ1 formula. By earlier chapters this
guarantees that the extension F ′ : V n → V of F defined by F ′(x1, . . . , xn) =
F (x1, . . . , xn) if x1 ∈ U1, . . . ,xn ∈ Un and = ∅ otherwise, is ∆ZF

1 in the sense
given.)

To give numbers to formulas we first define F : ω3 → ω by F (n,m, l) =
2n3n5l. Then F is injective and easily seen to be ∆ZF

1 . Write [n,m, l] for
F (n,m, l). We now define ⌈φ⌉ by induction on φ:

⌈vi = vj⌉ = [0, i, j];

⌈vi ∈ vj⌉ = [1, i, j];

⌈φ ∨ ψ⌉ = [2, ⌈φ⌉, ⌈ψ⌉];

⌈¬φ⌉ = [3, ⌈φ⌉, ⌈φ⌉];

⌈∀viφ⌉ = [4, i, ⌈φ⌉].

(8.1)

Of course this definition does not take place in ZF and is not actually used in
the following definition of Def . However it should be borne in mind in order to
see what’s going on.

Now defined the class term Sub : V 4 → V by Sub(a, f, i, c) = f(c/i) if
f ∈ <ωa, c ∈ a and i ∈ ω and = ∅ otherwise; where if f ∈ <ωa, c ∈ a and
i ∈ ω, f(c/i) ∈ <ωa is defined by dom(f(c/i)) = dom f , and for j ∈ dom f ,
f(c/i)(j) = f(j) if j 6= i, and c if j = i.

It’s easy to check that Sub is ∆ZF
1 .
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We now define a class term Sat : ω ×V → V . The idea is that if m ∈ ω and
m = ⌈φ(v0, . . . , xn1

)⌉, for some formula φ of LST, and a ∈ V , then

(∗) Sat(m,a) = {f ∈ <ωa : dom f ≥ n ∧ 〈a,∈〉 ² φ(f(0), . . . , f(n − 1))}.

We simply mimic the definition of satisfaction from predicate logic. (This def-
inition uses a version of the recursion theorem which is slightly different from
the usual one, see 8.1.2.)

Definition 8.1.1 Firstly if a ∈ V , m ∈ ω but m is not of the form [i, j, k],
for any i, j, k ∈ ω with i < 5, then Sat(m,a) = ∅. Otherwise, if a ∈ V and
m = [i, j, k] with i < 5, then

Sat([0, j, k], a) = {f ∈ <ωa : j, k ∈ dom f ∧ f(j) = f(k)}.

Sat([1, j, k], a) = {f ∈ <ωa : j, k ∈ dom f ∧ f(j) ∈ f(k)}.

Sat([2, j, k], a) = Sat(j, a) ∪ Sat(k, a).

Sat([3, j, k], a) = (<ωa \ Sat(j, a)) ∩ {g ∈ <ωa : ∃f ∈ Sat(j, a),dom f ≤ dom g}.

Sat([4, j, k], a) = {f ∈ <ωa : j ∈ dom f ∧ ∀x ∈ a, Sub(a, f, j, x) ∈ Sat(k, a)}.

(8.2)

The generalized version of the recursion theorem (on ω) required here is:

Lemma 8.1.2 Suppose that π1, π2, π3 : ω → ω are ∆ZF
1 class terms and H :

V 4 × ω → V is a ∆ZF
1 class term. Suppose further that ∀n ∈ ω \ {0} πi(n) < n

for i = 1, 2, 3. Then there is a ∆ZF
1 class term F : ω × V → V such that

1. F (0, a) = 0

2. and ∀n ∈ ω \ {0}

F (n, a) = H(F (π1(n), (a)), F (π2(n), (a)), F (π3(n), (a)), a, n).

(Thus instead of defining F (n, a) in terms of F (n−1, a), we are defining F (n, a)
in terms of three specified previous values.)
Proof. Similar to the proof of the usual recursion theorem on ω. ¤

Thus the definition of Sat in 8.1.1 is an application of 8.1.2 with π1(n) = i if
for some j, k < n, [i, j, k] = n, = 0 otherwise; and π2 and π3 are defined similarly,
picking out j and k respectively from [i, j, k], and with H : V 4 ×ω → V defined
so that

H(x, y, z, a, n) =







{f ∈ <ωa : π2(n), π3(n) ∈ dom f ∧ f(π2(n)) = f(π3(n))} if π1(n) = 0,
{f ∈ <ωa : π2(n), π3(n) ∈ dom f ∧ f(π2(n)) ∈ f(π3(n))} if π1(n) = 1,
y ∪ z if π1(n) = 2,
(<ωa \ y) ∩ {g ∈ <ωa : ∃f ∈ ydom f ≤ dom g} if π2(n) = 3,
{f ∈ <ωa : π2(n) ∈ dom f ∧ ∀x ∈ aSub(a, f, π2(n), x) ∈ z} if π1(n) = 4,
0 otherwise.
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(The F got from this H,π1, π2, π3 (in 8.1.2) is Sat.)
It is completely routine to show that Sat so defined satisfies the required

statement (*) (just before 8.1.1)—by induction on φ.
Before defining G we must introduce a term that picks out the largest n ∈ ω

such that “vn occurs free” in the “formula coded by m”. We denote this n by
θ(m). We first define Fr(m) (“the set of i such that vi occurs free in the formula
coded by m”) as follows (again using 8.1.2):

Fr([0, i, j]) = {i, j};

Fr([1, i, j]) = {i, j};

Fr([2, i, j]) = Fr(i) ∪ Fr(j);

Fr([3, i, j]) = Fr(i);

Fr([4, i, j]) = Fr(j) \ i;

Fr(x) = ∅, if x not of the above form.

(8.3)

Clearly one can prove in ZF that Fr(x) is a finite set of natural numbers for
any set x, and we defined

θ(x) = max(Fr(x)).

θ is ∆ZF
1 .

It is easy to show that if φ is any formula of LST and m = ⌈φ⌉, then θ(m) is
the largest n such that vn occurs as a free variable in φ, and that if f ∈ Sat(m,a),
for any a ∈ V , then dom f ≥ 1+θ(m) (ie. 0, 1, . . . , θ(m) ∈ dom f). This is proved
by induction on φ and it is for this reason that we defined Sat([3, j, k], a) as we
did (rather than just as <ωa \ Sat(j, a)).

We can now define G by

G(m,a, s) =

{

{b ∈ a : (s ∪ {〈θ(m), b〉}) ∈ Sat(m,a)} if s ∈ <ωa and dom s = θ(m)(= {0, . . . , θ(m) − 1}),
∅ otherwise.

Then G is easily seen to be ∆ZF
1 (since θ, Sat are), and has the required prop-

erties mentioned at the beginning of section 6, because of (*) (just before 8.1.1).
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Chapter 9

ZF+V=L⊢AC

9.1

We first construct a class term H : V → V such that if 〈a,R〉 ∈ V and R
is a well-ordering of the set a, then H(〈a,R〉) = 〈ω × <ωa,R′〉, where R′ is a
well-ordering of ω × <ωa.

[We don’t need absoluteness, though it holds]
We define H(x) = y iff x is not of the form 〈a,R〉, where R well-orders a,

and y = ∅, or x is of this form, and y is an ordered pair the first coordinate of
which is ω × <ωa and the second coordinate is R′, where R′ ⊆ (ω × <ωa)2, and
satisfies: 〈〈n, s〉, 〈n′, s′〉〉 ∈ R′ iff

1. n < n′, or

2. n = n′, and dom s < dom s′, or

3. n = n′, and dom s = dom s′ = k, say, and ∃j < k such that ∀l < j(s(l) =
s(l′) ∧ 〈s(j), s′(j)〉 ∈ R).

(This is basically lexicographic order within chunks based on domain size.)
Then it is easy to show that ZF proves that H has the required property.
Now let G : ω × V × V → V be as at the beginning of section 6.
Define J : On → V so that J(0) = 0, and J(α + 1) is the unique binary

relation S on Lα+1 such that for all x, y ∈ Lα+1,

1. If x ∈ Lα and y /∈ Lα, then 〈x, y〉 ∈ S;

2. If x ∈ Lα and y ∈ Lα, then 〈x, y〉 ∈ S iff 〈x, y〉 ∈ J(α);

3. If x, y ∈ Lα+1 \Lα and H(〈Lα, J(α)〉) = 〈ω×<ωLα, R〉, and 〈m, s〉 ∈ ω×
<ωa is R-minimal such that G(m, s, Lα) = x, and 〈m′, s′〉 ∈ ω×<ωa is R-
minimal such that G(m′, s′, Lα) = y, then 〈x, y〉 ∈ S iff 〈〈m, s〉, 〈m′, s′〉〉 ∈
R.
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And J(δ) =
⋃

α<δ J(α) if δ is a limit.
Then, from this definition, we immediately have by induction on α:

Lemma 9.1.1 (ZF) ∀α ∈ On, J(α) is a well-ordering of Lα, and J(α) ⊆
J(α + 1), and Lα+1 is an initial segment of Lα+1 under the ordering J(α + 1).

Corollary 9.1.2 (ZF) The formula Φ(x, y) : = ∃α(α ∈ On ∧ 〈x, y〉 ∈ J(α)) is
a well-ordering of L. (ie. Φ satisfies the axioms for a total ordering of L, and
every a ∈ L has a Φ-least element. In particular ∀a ∈ L, {〈x, y〉 ∈ a2 : Φ(x, y)}
is a well-ordering of a.)

Theorem 9.1.3 ZF+V=L⊢ every set can be well-ordered, so ZF+V=L⊢AC.

Proof. Immediate from 9.1.2. ¤



Chapter 10

Cardinal Arithmetic

10.1

Recall A ∼ B means there is a bijection between A and B.

Definition 10.1.1 An ordinal α is called a cardinal if for no β < α is β ∼ α.

Cardinals are usually denoted κ, λ, µ. Card denotes the class of all cardinals.
Now every well-ordered set is bijective with an ordinal (using an order-preserving
bijection). (Provable in ZF.) Hence if we assume ZFC, as we do throughout this
section, then every set is bijective with an ordinal.

Definition 10.1.2 (ZFC) The class term card : V → On is defined so that
card x is the least ordinal α such that α ∼ x.

Lemma 10.1.3 (ZFC) (1) The range of card is precisely the class of cardinals.
(2) For all cardinals κ there is a cardinal µ such that µ > κ. (κ+ is the least

such µ.) Draw attention to this notation—it conflicts with another notation on the

ordinals.

(3) If X is a set of cardinals with no greatest element then supX is a car-
dinal.

(4) cardκ = κ for all cardinals κ.

Proof. (1) Exercise
(2) Consider card Pκ (though this result is provable in ZFC)
(3) Let β = supX. Suppose ∃γ < β(γ ∼ β). Choose κ ∈ X, κ > γ.

Then idγ is an injection from γ to κ. However κ ∈ X, so κ < β, so by the
Schröder-Bernstein Theorem κ ∼ γ—contradicting the fact that κ is a cardinal.

(4) Exercise. ¤

(2) and (3) allow us to make the following

Definition 10.1.4 (ZFC) The class term ℵ : On → Card is defined by (writing
ℵα for ℵα)
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1. ℵ0 = ω (ie. card N)

2. ℵα+1 = ℵα
+

3. ℵδ =
⋃

α<δ ℵδ for δ a limit.

Lemma 10.1.5 {ℵα : α ∈ On} is the class of all infinite cardinals (enumerated
in increasing order). Thus ℵ1 is the smallest uncountable cardinal.

Proof. Exercise. ¤

Definition 10.1.6 Suppose κ, λ are cardinals.

1. κ + λ = card (κ × {0}) ∪ (λ × {1}).

2. κ.λ = card κ × λ.

3. κλ = card λκ.

Theorem 10.1.7 Suppose κ, λ, µ are non-zero cardinals. Then

1. κλ+µ = κλ.κµ.

2. κλ.µ = (κλ)µ.

3. (κ.λ)µ = κµ.λµ.

4. (ZFC) 2κ > κ.

5. (ZFC) If κ or λ is infinite, κ + λ = κ.λ = max{κ, λ}.

6. +, . and exp are (weakly) order-preserving.

Proof. See the books. ¤

Definition 10.1.8 The Generalized Continuum Hypothesis (GCH) is the state-
ment of LST: for all infinite cardinals κ, 2κ = κ+ (ie. ∀α ∈ On(2ℵα = ℵα+1)).

Definition 10.1.9 Suppose β > 0 is an ordinal and σ = 〈κα : α < β〉 is a
β-sequence of cardinals (ie. σ is a function with domain β and σ(α) = κα for
all α < β). Then we define

1.
∑

α<β κα = card
⋃

α<β(κα × {α})

2.
∏

α<β κα = card {f : f : β →
⋃

α<β κα, ∀α < β(f(α) ∈ κα)}.

Lemma 10.1.10 These definitions agree with the previous ones for β = 2.
Further, if κ, λ are cardinals, then κλ =

∏

α<λ κ.

Proof. Easy exercise. ¤
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Lemma 10.1.11 (1) Suppose γ, δ are non-zero ordinals and 〈κα,β : α < γ, β <
δ〉 is a sequence of cardinals (indexed by γ × δ). Then

∏

α<γ

∑

β<δ

κα,β =
∑

f∈γδ

∏

α<γ

κα,f(α).

(ie.
∏

distributes over
∑

.)
(2) Suppose β is a non-zero ordinal and 〈κα : α < β〉 is a β-sequence of

cardinals and κ is any cardinal. Then

(a) κ.
∑

α<β

κα =
∑

α<β

(κ.κα).

(b) If κα = κ for all α < β, then
∑

α<β

κα =
∑

α<β

κ = cardβ.κ.

(3)
∑

,
∏

are (weakly) order-preserving.

Proof. Exercises. ¤

Theorem 10.1.12 (“The König Inequality”) Suppose κα < λα for all α < β.
Then ∑

α<β

κα <
∏

α<β

λα.

Proof. Define f :
⋃

α<β(κα × {α}) →
∏

α<β λα by

(f(〈η, α〉))(v) =

{
η if v = α
0 if v 6= α

Clearly f is injective, so
∑

α<β κα ≤
∏

α<β λα.
Now suppose that h :

⋃

α<β(κα × {α}) →
∏

α<β λα. We show that h is not
onto.

For γ < β, define hγ :
⋃

α<β(κα × {α}) → λγ by

hγ(〈η, α〉) = (h(〈η, α〉)(γ) (*)

Draw commutative diagram.

Since κγ < λγ , hγ↾κγ × {γ} cannot map onto λγ so there is an aγ ∈ λγ \
hγ [κγ × {γ}] (**).

Define g ∈
∏

α<β λα by g(γ) = aγ (for γ < β).
Then g /∈ ranh, since if h(〈γ, α〉) = g, then h(〈γ, α〉)(γ) = g(γ) for all

γ < β, so h(〈γ, α〉)(α) = g(α) = aα, ie hα(〈γ, α〉) = aα, so aα ∈ hα[κα × {α}],
contradicting (**). ¤

Definition 10.1.13 (1) Let α be a limit ordinal and suppose S ⊆ α. Then S
is unbounded in α if ∀β < α∃γ ∈ S(γ > β).

(2) Let κ be a cardinal. Then cf(κ) is the least ordinal α such that there
exists a function f : α → κ such that ranf is unbounded in κ.
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Remark 10.1.14 Suppose cf(κ) = α and γ < α, γ ∼ α. Say p : γ → α is
a bijection. Let f : α → κ be such that ranf is unbounded in κ. Now clearly
ranf = ran(fp), so fp : γ → κ is a function whose range is unbounded in κ.
Since γ < α this contradicts the definition of cf(κ). Hence no such γ exists,
ie. cf(κ) is always a cardinal. Clearly cf(κ) ≤ κ.

Definition 10.1.15 An infinite cardinal κ is called regular if cf(κ) = κ.

Examples 10.1.16 (a) cf(ℵ0) = ℵ0 (obvious).
(b) cf(ℵ1) = ℵ1, since if cf(ℵ1) < ℵ1, then cf(ℵ1) = ℵ0. Say f : ℵ0 → ℵ1 is

unbounded. Then ℵ1 =
⋃

n<ℵ0
f(n), and is a countable union of countable sets,

and thus (in ZFC) countable, which is impossible.
(c) cf(ℵω) = ℵ0. ≥ is clear. Consider f : ℵ0 → ℵω defined so that f(n) =

ℵn.

Theorem 10.1.17 For any infinite cardinal κ, cf(κ) is the least ordinal β such
that there is a β-sequence 〈κα : α < β〉 of cardinals such that

1. κα < κ for all α < β,

2.
∑

α<β κα = κ.

Proof. Exercise. ¤

Theorem 10.1.18 For any infinite cardinal κ,

1. κ+ is regular,

2. cf(2κ) > κ.

Proof. (1) Let β = cf(κ+) and suppose β < κ+. Then β ≤ κ. By 10.1.17, there
are κα < κ+ (for α < β) such that

∑

α<β κα = κ+. Then κα ≤ κ for all α. But
∑

α<β κα ≤
∑

α<β κ ≤ κ.κ = κ2 = κ—a contradiction.
(2) Suppose µ = cf(2κ), and µ ≤ κ. Choose 〈κα : α < µ〉 such that κα < 2κ

for all α < µ and such that
∑

α<µ κα = 2κ.
By König,

∑

α<µ κα <
∏

α<µ 2κ, ie. 2κ <
∏

α<µ 2κ.
But

∏

α<µ 2κ = (2κ)µ = 2κ.µ = 2κ (since µ < κ). This is a contradiction. ¤

Examples 10.1.19 cf(2ℵ0) > ℵ0; and this is the only provable constraint on
the value of 2ℵ0 . —So, for example, 2ℵ0 6= ℵω.

Theorem 10.1.20 Suppose α is an infinite ordinal. Then cardLα = card α.

Proof. Induction on α.
For α = ω, Lω =

⋃

n∈ω Ln. Since each Ln is finite, and ω ⊆ Lω (so Lω is
not finite), cardLω = ℵ0 = card ω.

Suppose cardLα = cardα.
Now Lα+1 = {G(m,a, s) : m ∈ ω, s ∈ <ωLα}.
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However, for x infinite, card <ωx = card x.
So cardLα+1 ≤ ℵ0.card <ωLα = ℵ0.card Lα = ℵ0.card α = cardα = card (α+

1).
Also Lα ⊆ Lα+1, so card Lα+1 ≥ cardLα = card α = card (α + 1).
For δ a limit, cardLδ = card

⋃

α<δ Lα ≤
∑

α<δ card Lα ≤ ℵ0+
∑

ω≤α<δ card Lα =

ℵ0 +
∑

ω≤α<δ card α (IH) ≤ ℵ0 +
∑

ω≤α<δ card δ = ℵ0 + card δ2 = card δ (since
δ is infinite).

—and other way round too: δ ⊆ Lδ, so that works. ¤
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Chapter 11

The

Mostowski-Shepherdson

Collapsing Lemma

11.1

Lemma 11.1.1 Suppose X is a set and M1, M2 are transitive sets. Suppose
πi : X → Mi are ∈-isomorphisms (ie. ∀x, y ∈ X(x ∈ y ↔ πi(x) ∈ πi(y))). Then
π1 = π2 (and hence M1 = M2).

Proof. Define φ(x) ⇔ x /∈ X ∨ π1(x) = π2(x).
We prove ∀xφ(x) by ∈-induction (see 3.1.6).
Suppose x is any set, and φ(y) holds for all y ∈ x. If x /∈ X we are done.

Hence suppose x ∈ X, and π1(x) 6= π2(x). Then there is z such that (say) z ∈
π1(x) and z /∈ π2(x). Since M1 is transitive and pi1(x) ∈ M1, we have z ∈ M1.
Hence (since π1 is onto), ∃y ∈ X such that π1(y) = z. Since π1(y) ∈ π1(x),
we have y ∈ x, and hence (by IH), z = π1(y) = π2(y) and π2(y) ∈ π2(x). So
z ∈ π2(x)—a contradiction.

Thus φ(x) holds, hence result by 3.1.6. ¤

Theorem 11.1.2 Suppose X is any set such that 〈X,∈〉 ² Extensionality.
(ie. if a, b ∈ X and a 6= b, then ∃x ∈ X such that x ∈ a ∧ x /∈ b or vice
versa.) Then there is a unique transitive set M and a unique function π such
that π is an ∈-isomorphism from X to M .

Proof. Uniqueness is by 11.1.1. For existence, we prove by induction on α ∈ On,
that ∃πα : X ∩Vα ∼ Mα for some transitive set Mα. Or define π↾(Vα+1 \Vα) by

recursion. (Since X ⊆ Vα for some α, this is sufficient.
Note that ∀α ∈ On, 〈X ∩ Vα,∈〉 ² Extensionality (since Vα is transitive).

Now suppose πα, Mα exist for all α < β. It’s easy to show (by 11.1.1) that they
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are unique and ∀α < α′ < β Mα ⊆ Mα′ , and πα = πα′↾Mα. Hence if β is a
limit ordinal, then take Mβ =

⋃

α<β Mα and πβ =
⋃

α<β πα.
So suppose β = γ + 1. We have πγ : X ∩ Vγ ∼ Mγ . For x ∈ X ∩ Vγ+1, note

that y ∈ x ∩ X → y ∈ X ∩ Vγ , so we may define

πγ+1(x) = {πγ(y) : y ∈ x ∩ X}.

Let Mγ+1 = πγ+1[X ∩ Vγ+1]. Then πγ+1 : X ∩ Vγ+1 → Mγ+1 is surjective.
Suppose a, b ∈ X ∩ Vγ+1, a 6= b. Since 〈X ∩ Vγ+1,∈〉 ² Extensionality,

∃c ∈ X ∩ Vγ+1 such that (say) c ∈ a ∧ c /∈ b.
Then πγ+1(a) = {πγ(y) : y ∈ a ∩ X} ∋ πγ(c).
Suppose πγ(c) ∈ πγ+1(b). Then πγ(c) = πγ(t) for some t ∈ b ∩ X. Since

c /∈ b ∩ X, we have c 6= t, so πγ is not injective—contradiction.
Thus πγ(c) /∈ πγ+1(b), so πγ+1(a) 6= πγ+1(b) and so πγ+1 is injective.
We now show that if x ∈ X ∩ Vγ (⊆ X ∩ Vγ+1), then πγ(x) = πγ+1(x) (*)
For, y ∈ πγ(x) implies y ∈ πγ(x) ∈ Mγ implies y ∈ Mγ (since Mγ is

transitive), say πγ(t) = y (t ∈ X ∩ Vγ).
Then πγ(t) ∈ πγ(x), so t ∈ x, hence t ∈ x ∩ X.
Thus πγ+1(x) = {πγ(z) : z ∈ x ∩ X} ∋ πγ(t) = y.
This shows πγ(x) ⊆ πγ+1(x).
Conversely, suppose y ∈ πγ+1(x). Then y = πγ(t) for some t ∈ x ∩ X.

Since t ∈ x ∈ X ∩ Vγ , we have πγ(t) ∈ πγ(x) (since πγ is an ∈-isomorphism).
Ie. y ∈ πγ(x). So πγ+1(x) ⊆ πγ(x), and we have (*). Or do ∈-induction.

Now suppose a, b ∈ X ∩ Vγ+1, and a ∈ b (so a ∈ X ∩ Vγ).
Then πγ+1(b) = {πγ(y) : y ∈ b ∩ X}. But a ∈ b ∩ X, so πγ(a) ∈ πγ+1(b).

Hence by (*) πγ+1(a) ∈ πγ+1(b).
Finally, Mγ+1 is transitive, since if a ∈ b ∈ Mγ+1, then b = πγ+1(x) for some

x ∈ X ∩ Vγ+1, and hence a = πγ(y) for some y ∈ x ∩ X. Since y ∈ X ∩ Vγ , we
have, by (*), πγ(y) = πγ+1(y), so a ∈ ranπγ+1 = Mγ+1, as required. ¤



Chapter 12

The Condensation Lemma

and GCH

12.1

Theorem 12.1.1 (The Condensation Lemma) Let α be a limit ordinal and
suppose X ¹ Lα (ie. ∀a1, . . . , an ∈ X, and formulas φ(v1, . . . , vn) of LST, 〈X,∈
〉 ² φ(a1, . . . , an) iff 〈Lα,∈〉 ² φ(a1, . . . , an), although we only need this when φ
is a Σ1 formula). Then there is unique π and β such that β ≤ α and π : X ∼ Lβ

is an ∈-isomorphism. Further if Y ⊆ X and Y is transitive, then π(y) = y for
all y ∈ Y .

We prove this in stages.

Lemma 12.1.2 ∀m ∈ ω, Lm ⊆ X.

Proof. Clear for m = 0. Suppose Lm ⊆ X and let a ∈ Lm+1, so a =
{a1, . . . , an} ⊆ Lm. Then Lα ² ∃x((a1 ∈ x∧ . . .∧an ∈ x)∧∀y ∈ x(y = a1∨ . . .∨
y = an)). Hence X ² ∃x((a1 ∈ x∧ . . .∧an ∈ x)∧∀y ∈ x(y = a1 ∨ . . .∨y = an)).
Clearly such an x must be a, so a ∈ X. Hence Lm+1 ⊆ X. Hence the result
follows by induction. ¤

Lemma 12.1.3 X ² Extensionality.

Proof. For suppose a, b ∈ X and a 6= b. Then ∃c, c ∈ a∧ c /∈ b (say), and c ∈ Lα

since Lα is transitive. Thus Lα ² ∃x(x ∈ a ∧ x /∈ b), so X ² ∃x(x ∈ a ∧ x /∈ b),
as required. ¤

By 11.1.2 there is transitive M and π : X ∼ M . Now since M is tran-
sitive, M ∩ On is a transitive set of ordinals so is an ordinal, β, say. Then
β ≤ α (exercise—suppose β > α, so π−1(α) ∈ X. Show π−1(α) = α to get
contradiction). We show M = Lβ .
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An admission! For this proof we need the fact that most of the formulas that
we have proven ∆ZF

1 are in fact absolute between transitive classes satisfying
much weaker axioms than ZF—in fact BS—basic Set Theory (see Devlin). BS is
such that Lα ² BS for any limit ordinal α > ω. In particular, the formula On(x),
and Φ(x, y) : = On(x) ∧ y = Lx, is ∆ZF

1 and hence absolute between V and
Lα and between V and M . (Since M is transitive.) As an application, suppose
β = γ ∪ {γ}. Since β /∈ M , and γ ∈ M , and M ² On(γ) (since On(γ) really is
Σ0 and M is transitive), we have M ² ∃x(On(x)∧∀yy 6= x∪{x}). Now X ∼ M ,
so X ² ∃x(On(x)∧∀y y 6= x∪{x}), hence Lα ² ² ∃x(On(x)∧∀y y 6= x∪{x}),
which is a contradiction, since α is a limit ordinal. Hence, we have shown:

Lemma 12.1.4 β is a limit ordinal.

Lemma 12.1.5 Lβ ⊆ M .

Proof. Since β is a limit, Lβ =
⋃

γ<β Lγ , so fix γ < β. Sufficient to show
Lγ ⊆ M .

Now for any η < α, Lη ∈ Lα. Since Lα∩On = α, we have Lα ² ∀x(On(x) → ∃yΦ(x, y))
︸ ︷︷ ︸

σ

.

Hence X ² σ, since X ¹ Lα, so M ² σ, since X ∼ M .
Since ∀x ∈ M , M ² On(u) ⇔ u ∈ On ∧ u < β, we have in particular

M ² ∃yΦ(γ, y)—say a ∈ M and M ² Φ(γ, a). By absoluteness a = Lγ , so
Lγ ∈ M , so Lγ ⊆ M since M is transitive. ¤

Lemma 12.1.6 M ⊆ Lβ.

Proof. Since Lα =
⋃

γ<α Lγ , we have Lα ² ∀x∃y∃z(On(y) ∧ Φ(y, z) ∧ x ∈ z)
︸ ︷︷ ︸

τ

.

Hence X ² τ (since X ¹ Lα), hence M ² τ (since X ∼ M .
Let a ∈ M . Then for some c, d ∈ M ,

M ² On(c) ∧ Φ(c, d) ∧ a ∈ d.

By absoluteness, c ∈ On, and hence c < β, and d = Lc and a ∈ Lc. Hence
a ∈

⋃

γ<β Lγ = Lβ , as required. ¤

Lemma 12.1.7 Suppose Y ⊆ X, Y transitive. Then ∀y ∈ Y π(y) = y.

Proof. It’s easy to show π[Y ] is transitive and π : Y ∼ π[Y ]. However, id↾Y ∼ Y .
Hence by 11.1.1, π = id↾Y . ¤

We have now completed the proof of 12.1.1.

Lemma 12.1.8 (ZFC) Let A be any set and Y ⊆ A. Then there is a set X
such that Y ⊆ X ⊆ A and 〈X,∈〉 ¹ 〈A,∈〉, and card X = max(ℵ0, card X).

Proof. This is the downward Löwenheim-Skolem Theorem. ¤
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Theorem 12.1.9 (ZF+V=L) Let κ be a cardinal, and suppose x is a bounded
subset of κ. Then x ∈ Lκ.

Proof. Clear if κ ≤ ω, so assume κ > ω. Now x ⊆ α for some ω ≤ α < κ, so
x ⊆ Lα. Then Lα ∪ {x} is transitive.

Using V=L, let λ be a limit ordinal such that λ ≥ κ, and Lα ∪ {x} ⊆ Lλ.
By 12.1.8, with A = Lλ and Y = Lα ∪ {x}, let X be such that Lα ∪ {x} ⊆ X
and X ¹ Lλ, with cardX ≤ card Lα ∪ {x} = card α. Let π : X ∼ Lβ be as in
12.1.1. Then cardβ = cardLβ = cardX ≤ cardα < κ, so β < κ. But Lα ∪ {x}
is transitive so, in particular, π(x) = x, so x ∈ Lβ ⊆ Lκ, as required. ¤

Corollary 12.1.10 ZF+V=L ⊢ GCH. Hence if ZF is consistent, so is ZFC+GCH.

Proof. By 12.1.9. ZF+V=L ⊢ ’for all infinite κ, Pκ ⊆ Lκ+ ’. But ZF⊢ ’for all
infinite κ, cardLκ+ = κ+,’ hence ZF+V=L ⊢ ’for all infinite κ, card Pκ ≤ κ+.’
So 2κ ≤ κ+, and ≥ is obvious. ¤


