Proof of Bayes Theorem

The probability of two events A and B happening, $\mathrm{P}(\mathrm{A} \cap \mathrm{B})$, is the probability of $\mathrm{A}, \mathrm{P}(\mathrm{A})$, times the probability of B given that A has occurred, $\mathrm{P}(\mathrm{B} \mid \mathrm{A})$.

$$
\begin{equation*}
P(A \cap B)=P(A) P(B \mid A) \tag{1}
\end{equation*}
$$

On the other hand, the probability of A and B is also equal to the probability of B times the probability of A given B.

$$
\begin{equation*}
P(A \cap B)=P(B) P(A \mid B) \tag{2}
\end{equation*}
$$

Equating the two yields:

$$
\begin{equation*}
P(B) P(A \mid B)=P(A) P(B \mid A) \tag{3}
\end{equation*}
$$

and thus

$$
\begin{equation*}
P(A \mid B)=P(A) \frac{P(B \mid A)}{P(B)} \tag{4}
\end{equation*}
$$

This equation, known as Bayes Theorem is the basis of statistical inference.

