
Gaussian Integrals
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In general, from dimensional anlysis we see:∫ ∞
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and in particular:
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Notes on proving these integrals: Integral 1 is done by squaring the integral, combining
the exponents to x2 + y2 switching to polar coordinates, and taking the R integral in the
limit as R→∞. Integral 2 is done by changing variables then using Integral 1. Integral 3 is
done by completing the square in the exponent and then changing variables to use equation 1.
Integral 4(5) can be done by integrating over a wedge with angle π
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theory to relate the integral over the real number to the other side of the wedge, and then
using Integral 1.

For n even Integral 7 can be done by taking derivatives of equation 2 with respect to a.
For n odd, Integral 7 can be done with the substitution u = ax2, and then integrating by
parts.


