H→WW and the Discovery of the Higgs Boson at ATLAS

John Alison University of Pennsylvania

1

Introduction

Projects on ATLAS

Basic Tracking / Commissioning with Cosmic-Rays TRT Performance Inner Detector Alignment (TRT) Electron Identification Designing HLT Trigger / Offline Electron Definitions Electron Efficiency Multivariate Electron Identification

Physics on ATLAS

W/Z Cross section (300/nb, 35/pb)
WW Cross section (35/pb, 1/fb)
Search for H→WW
W+jet Background
Observation of Higgs.

Outline

The Higgs: Introduction/Motivation

Why $H \rightarrow WW$.

 $H \rightarrow WW \rightarrow lv lv (WW \rightarrow lv lv)$

Results in broader context

- Simple/Accurate description elementary particles and their interactions <u>Matter Particles</u>

$$\begin{pmatrix} v_{e} \\ e \end{pmatrix} \begin{pmatrix} v_{\mu} \\ \mu \end{pmatrix} \begin{pmatrix} v_{\tau} \\ \tau \end{pmatrix} \begin{pmatrix} u \\ d \end{pmatrix} \begin{pmatrix} c \\ s \end{pmatrix} \begin{pmatrix} t \\ b \end{pmatrix}$$

- Quantum Field Theory. Gauge Invariance $SU(3) \times SU(2) \times U(1)$

- Simple/Accurate description elementary particles and their interactions <u>Matter Particles</u>

$$\begin{pmatrix} v_{e} \\ e \end{pmatrix} \begin{pmatrix} v_{\mu} \\ \mu \end{pmatrix} \begin{pmatrix} v_{\tau} \\ \tau \end{pmatrix} \begin{pmatrix} u \\ d \end{pmatrix} \begin{pmatrix} c \\ s \end{pmatrix} \begin{pmatrix} t \\ b \end{pmatrix}$$

- Quantum Field Theory. Gauge Invariance $SU(3) \times SU(2) \times U(1)$

Gauge Bosons

g W Z γ

- Consistent theory strong, weak, and electromagnetic forces.
- Gauge Invariance implies massless Matter Particles and Gauge Bosons

- Simple/Accurate description elementary particles and their interactions <u>Matter Particles</u>

$$\begin{pmatrix} v_{e} \\ e \end{pmatrix} \begin{pmatrix} v_{\mu} \\ \mu \end{pmatrix} \begin{pmatrix} v_{\tau} \\ \tau \end{pmatrix} \begin{pmatrix} u \\ d \end{pmatrix} \begin{pmatrix} c \\ s \end{pmatrix} \begin{pmatrix} t \\ b \end{pmatrix}$$

- Quantum Field Theory. Gauge Invariance $SU(3) \times SU(2) \times U(1)$

Gauge Bosons

- g W Z Ŷ
- Consistent theory strong, weak, and electromagnetic forces.
- Gauge Invariance implies massless <u>Matter Particles</u> and <u>Gauge Bosons</u>

<u>Higgs boson:</u>

"Spontaneously Symmetry Breaking"

Allows for Massive fermions, Massive Weak bosons and Gauge Invariance Additional particle predicted by the theory.

- Simple/Accurate description elementary particles and their interactions <u>Matter Particles</u>

$$\begin{pmatrix} v_{e} \\ e \end{pmatrix} \begin{pmatrix} v_{\mu} \\ \mu \end{pmatrix} \begin{pmatrix} v_{\tau} \\ \tau \end{pmatrix} \begin{pmatrix} u \\ d \end{pmatrix} \begin{pmatrix} c \\ s \end{pmatrix} \begin{pmatrix} t \\ b \end{pmatrix}$$

- Quantum Field Theory. Gauge Invariance $SU(3) \times SU(2) \times U(1)$

Gauge Bosons

Additio

gWZγ- Consistent theory strong, weak, and electromagnetic forces.- Gauge Invariance implies massless Matter Particles and Gauge BosonsHiggs boson:"Sponta AllowsPrior to LHC, only element of theory not directly

confirmed by experiment.

 e^+e^- Collisions

Hadron Collisions

Predicting the Mass of the Top Quark

Predicting the Mass of the Top Quark

Overall view of the LHC experiments.

The Basic Outputs:

A lot of work goes into making/understanding these basic outputs. Chapter 4-7

 V_{μ}

 V_{τ}

 ν_{e}

u c t d s b

b

Higgs at the LHC

How to look for the Higgs.

WW→lvlv has Strongest sensitivity over broad range of m(H) Critical in the region between LEP and SM prediction *Mediator of EWK symmetry breaking must couple to the W and Z*

lvlv Final State

Tools needed for lvlv final state have wide applicability.

- Lepton ID

...Tracking/ Electron ID / Trigger

- W+jets background (ubiquitous)

...Data Driven W+jet modeling

- MeT modeling.

Broad range of physics lvlv final state has wide applicability.

- Higgs Physics.
- SM measurements.

...SM WW cross section, 35/pb, 1/fb

- SUSY / Exotic extensions to the SM.

Finding the Haystack

Continuum Standard Model WW production major background.

m_{ee} [GeV]

Background Estimation

A lot of work goes into making/understanding bkg. prediction. Chapter 9-11

SM WW Cross Section Measurement

SM WW Cross Section Measurement

Results H→WW

2012 Results (5.8/fb 8 TeV)

Results H→WW

Combined Results (5.8/fb 8 TeV + 4.7/fb 7 TeV)

Other Higgs Searches

42

Signal strength (μ)

The New York Times

Physicists Find Elusive Particle Seen as Key to Universe

Problem with the Higgs Mass

Loop Corrections to Higgs Mass

The Standard Model is incomplete.

- GUT, Gravity ...

 $\Lambda^2 \sim 10^{36} \ {\rm GeV}^2$

implausible cancelation from $m_h^{0^2}$

Problem with the Higgs Mass

Loop Corrections to Higgs Mass

$$m_h^2 = m_h^{0\,2} - \Lambda^2$$
 $-\frac{H}{---}$ $-\frac{H}{---}$ $-\frac{H}{---}$ $-\frac{H}{----}$ $-\frac{H}{----}$

The Standard Model is incomplete.

- GUT, Gravity ...

 $\Lambda^2 \sim 10^{36} \text{ GeV}^2$

implausible cancelation from $m_h^{0^2}$

<u>В</u>

Super Symmetry

$$\mathcal{L} = \mathcal{L}_{SUSY} + \mathcal{L}_{soft}, \quad m_{soft} \sim \text{TeV scale}$$

 $\Delta m_H^2 = m_{soft}^2 \left[\frac{\lambda}{16\pi^2} \ln(\Lambda_{UV}/m_{soft}) + \dots \right]$

Conclusions

"We are, I think, in the right road of improvement, for we are making experiments." – Benjamin Franklin

Its a great time to be doing particle physics !

Supporting Material

$Z \rightarrow \mu \mu$ at LEP (Opal)

$Z \rightarrow \mu \mu$ at LEP (Opal)

$Z \rightarrow \mu \mu$ at the LHC (ATLAS)

"Pile-up"

~10 cm

Top Mass Vs Time

Spontaneous Symmetry Breaking

Add scalar field that couple to $SU(2) \times U(1)$ gauge fields:

Lagrangian preserve symmetry, but the state that describe reality does not

mT and mW

95% CL Limit on σ/σ_{SM}

61

Jet Measurements

Finding the Needle

WW Cross Section

Motivation:

- Dominant Background to $H \rightarrow WW$ search
- Test EWK model, Sensitive to Triple Gauge Couplings

Signature:

- Performed Fully Leptonic Decays.
- 2 Opposite-Sign Leptons (e,µ)
- Large Missing Energy

$$\sigma_{WW} = \frac{N - N_{Bkg}}{\epsilon \times A \times L}$$

Drell-Yan Background

Background from DY if "fake" MeT Observed momentum imbalance that is not due to the presence of neutrinos.

Causes of fake MeT not necessarily expected to be reproduced by MC.

Use Data Events in the Z peak:

Quantify modeling of MeT in DY Events with: $S(E_T^{miss,Rel}) = \frac{N_{Data} - N_{MC}}{N_{DY}}$

Measurement:

Channel	S	- Given Data/MC consistency	
	0.06 ± 0.08	do not correct prediction.	
mm	0.05 ± 0.10	- S to assign systematic.	ata/MC

Top Background

Reduce systematics by applying SF measured in Tag sample. $N_{\text{Top}}^{\text{Bkg}}(0\text{-jet}) = N_{\text{Top}}^{Data} \times \text{SF} \times \frac{N_{\text{Top}}^{\text{MC}}(0\text{-jet})}{N_{\text{Top}}^{\text{MC}}}$ SF - scale factor from tag sample Leads to cancelation of some of the JES uncertainty in jet-veto . ~20 % systematic vs ~40 % without SF.

Fake Factor Method

- 1) Define Denominator Definition
- 2) Measure f and its uncertainty in di-jet control sample
- 3) Select (Lepton-Denm.) pairs passing the Event selection
- 4) Subtract non-W+jet contribution to (Lep-Denm) pairs, with MC
- 5) Scale by f to predict W+jet event yields / kinematics.

WW Cross Section Results

Background Process	$e\mu$ -channel	ee-channel	$\mu\mu$ -channel
DY	$13.0 \pm 2.1 \pm 1.6$	$12.5 \pm 2.3 \pm 1.4$	$10.9 \pm 2.5 \pm 1.4$
Top	$11.9\pm1.8\pm2.4$	$3.1\pm0.5\pm0.6$	$3.8\pm0.6\pm0.8$
$W+{ m jet}$	$10.0\pm1.6\pm2.1$	$4.1\pm1.3\pm0.9$	$4.2\pm1.1\pm1.3$
Di-boson	$5.1\pm1.0\pm0.7$	$2.1\pm0.8\pm0.3$	$2.9\pm0.4\pm0.4$
Total background	$40.0 \pm 3.3 \pm 3.6$	$21.7 \pm 2.8 \pm 1.8$	$21.8 \pm 2.8 \pm 2.1$
(Data Yields)	(202)	(59)	(64)

	Source	Uncertainty
	Luminosity	3.7%
$\sigma(pp \rightarrow WW) = 54.4 \pm 4.0 \text{(stat)} \pm 3.9 \text{(syst)} \pm 2.0 \text{(lumi) pb},$	Background	9.6%
NLO SM prediction of $\sigma(pp \to WW) = 44.4 \pm 2.8$ pb.	Acceptance	7.4%
	Systematic	13.1%
	Statistical	8.3%

 $\mathbf{v}\mathbf{v}$

πωω Cui riows

0-jet	Signal	WW	Di-bosor	n $tar{t}$	Single Top	$D Z/\gamma^*$	$W + j\epsilon$	ets Total Bl	kg. Obs.
Jet Veto	56.7 ± 0.2	1273 ± 79	97 ± 4	174 ± 12	$2 95 \pm 7$	1039 ± 2	$28 217 \pm 4$	2893 ± 1	15 2849
$m_{\ell\ell} < 50 { m ~GeV}$	45.2 ± 0.2	312 ± 20	41 ± 3	29 ± 2	19 ± 2	$168 \pm$	$10 70 \pm 2$	639 ± 2	645
$p_{\mathrm{T}}^{\ell\ell}\mathrm{cut}$	40.1 ± 0.2	282 ± 18	35 ± 3	28 ± 2	18 ± 2	$28\pm$	$6 49 \pm 2$	439 ± 2	6 443
$\Delta \phi_{\ell\ell} < 1.8$	39.0 ± 0.2	276 ± 17	33 ± 2	27 ± 2	18 ± 2	$28\pm$	$6 44 \pm 1$	425 ± 2	6 429
1-Jet	Signal	WW	Di-boson	$t \bar{t}$	Single Top	p Z/γ^*	W + jet	ts Total Bk	g. Obs.
1 jet	22.7 ± 0.1	343 ± 54	56 ± 3	1438 ± 60	$) 436 \pm 19$	357 ± 1	7 85 ± 3	2715 ± 14	42 2706
<i>b</i> -jet veto	20.9 ± 0.1	319 ± 50	52 ± 3	412 ± 18	$8 139 \pm 7$	332 ± 1	6 76 ± 3	1330 ± 84	4 1369
$ \mathbf{p}_{\mathrm{T}}^{\mathrm tot} < 30 \mathrm{GeV}$	14.0 ± 0.1	226 ± 35	34 ± 2	181 ± 8	80 ± 4	108 ± 8	37 ± 2	666 ± 5	1 684
$Z \to \tau \tau$ veto	14.0 ± 0.1	220 ± 34	34 ± 2	173 ± 8	77 ± 4	85 ± 7	37 ± 2	627 ± 50	0 644
$m_{\ell\ell} < 50 { m ~GeV}$	10.9 ± 0.1	49 ± 8	14 ± 2	33 ± 2	18 ± 1	24 ± 3	12 ± 1	148 ± 12	2 170
$\Delta \phi_{\ell\ell} < 1.8$	10.1 ± 0.1	44 ± 7	13 ± 2	31 ± 2	17 ± 1	10 ± 2	10 ± 1	126 ± 10	0 145
2012									
0-jet	Signal	WW	Di-boson	$t \bar{t}$	Single Top	Z/γ^*	W + jets	Total Bkg.	Obs.
Jet Veto	47.5 ± 0.4	1308 ± 9	125 ± 4	184 ± 4	109 ± 6	850 ± 32	138 ± 4	2714 ± 34	2691
$p_{\rm T}^{\ell\ell} > 30 { m ~GeV}$	43.4 ± 0.4	1077 ± 8	99 ± 4	165 ± 4	98 ± 5	47 ± 8	102 ± 2	1589 ± 14	1664
$m_{\ell\ell} < 50 { m ~GeV}$	34.9 ± 0.4	244 ± 4	33 ± 2	28 ± 2	17 ± 2	5 ± 2	29 ± 1	356 ± 6	421
$\Delta \phi_{\ell\ell} < 1.8$	33.6 ± 0.4	234 ± 4	32 ± 2	27 ± 2	17 ± 2	4 ± 2	25 ± 1	339 ± 6	407
1-Jet	Signal	WW	Di-boson	$t\bar{t}$	Single Top	Z/γ^*	W + jets	Total Bkg.	Obs.
1 jet	24.9 ± 0.3	396 ± 5	74 ± 3	1652 ± 12	479 ± 12	283 ± 20	68 ± 3	2953 ± 27	2874
<i>b</i> -jet veto	21.1 ± 0.3	334 ± 4	56 ± 2	349 ± 6	115 ± 6	236 ± 18	53 ± 2	1144 ± 21	1115
$ \mathbf{p}_{\mathrm{T}}^{\mathrm tot} < 30 \mathrm{GeV}$	12.2 ± 0.2	210 ± 3	30 ± 2	139 ± 4	63 ± 5	124 ± 14	23 ± 2	590 ± 15	611
$Z \to \tau \tau$ veto	12.2 ± 0.2	204 ± 3	29 ± 2	133 ± 3	61 ± 5	98 ± 12	23 ± 2	547 ± 14	580
$m_{\ell\ell} < 50 { m ~GeV}$	9.2 ± 0.2	37 ± 1	10 ± 1	21 ± 1	12 ± 2	16 ± 5	8.0 ± 0.9	104 ± 6	122
$\Delta \phi_{\ell\ell} < 1.8$	8.6 ± 0.2	34 ± 1	9 ± 1	20 ± 1	11 ± 2	3 ± 2	6.4 ± 0.7	84 ± 4	106

Hww Systematics

Source (0-jet)	Signal (%)	Bkg. (%)
Inclusive ggF signal ren./fact. scale	19	_
1-jet incl. ggF signal ren./fact. scale	10	-
W+jets fake factor	-	10
Parton distribution functions	8	2
WW normalization	-	6
Jet energy scale	6	-
Source (1-jet)	Signal (%)	Bkg. (%)
Source (1-jet) 1-jet incl. ggF signal ren./fact. scale	Signal (%) 27	Bkg. (%)
	<u> </u>	Bkg. (%) -
1-jet incl. ggF signal ren./fact. scale	27	Bkg. (%) - - 3
1-jet incl. ggF signal ren./fact. scale 2-jet incl. ggF signal ren./fact. scale	27	Bkg. (%) - - 3 7
1-jet incl. ggF signal ren./fact. scale 2-jet incl. ggF signal ren./fact. scale $E_{\rm T}^{\rm miss}$ modeling	27	Bkg. (%) - - 3 7 7 7

Source (0-jet)	Signal (%)	Bkg. $(\%)$
Inclusive ggF signal ren./fact. scale	13	-
1-jet incl. ggF signal ren./fact. scale	10	-
Parton distribution functions	8	2
Jet energy scale	7	4
WW normalization	-	7
WW modeling and shape	-	5
W+jets fake factor	-	5
QCD scale acceptance	4	2
Source (1-jet)	Signal $(\%)$	Bkg. (%)
1-jet incl. ggF signal ren./fact. scale	28	-
WW normalization	-	25
2-jet incl. ggF signal ren./fact. scale	16	-
b-tagging efficiency	-	10
Parton distribution functions	7	1
W+jets fake factor	-	5

Relative Missing Energy

Electron Candidates in ATLAS

Electron Identification

Low Low Mass

m_S⁰ (GeV)