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W,F
H1(V )F ⇒ matter

H1(V ∗)F ⇒ conjugate matter

H1(∧2V )F ⇒ Higgs

H1(V ⊗ V ∗)F ⇒ Bundle Moduli

N = 1 SUSY

“slope” stable
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Smooth Heterotic Compactifications

R4

D = 6
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R4 Theory Gauge Group:

G = SU(4)⇒
F = Z3 × Z3 ⇒

E8 → H = Spin(10)

Spin(10)→ SU(3)C × SU(2)L × U(1)Y ×U(1)B−L

rank Spin(10)=5 plus F Abelian ⇒ extra gauged     U(1)B−L .
By construction               is anomaly free. Note that

Z2 (R− parity) ⊂ U(1)B−L

⇒ no rapid proton decay. But must be spontaneously 

broken above the scale of weak interactions.

Gauge connection

Wilson line

H =

U(1)B−L

V , G = SU(4) W , F = Z3 × Z3,
Braun, He, Ovrut, Pantev 2006

Anderson, Gray, He, Lukas 2009

Heterotic Standard Model



R4 Theory Spectrum:

E8
V−→ Spin(10)⇒

248 = (1, )⊕ (4, )⊕ (4̄, )⊕ (6, )⊕ (15, )45 16 1̄6 10 1

The Spin(10) spectrum is determined from nR = h1(X, UR(V )).

Spin(10) F−→ SU(3)C × SU(2)L × U(1)Y × U(1)B−L ⇒

The 3× 2× 1Y × 1B−L spectrum is determined from

nr = (h1(X, UR(V ))⊗R)Z3×Z3 . Tensoring and taking invariant subspace  

of quarks/leptons each transforming asgives 3 families 

QL = (3, 2, 1, 1), uR = (3̄, 1,−4,−1), dR = (3̄, 1, 2,−1)

LL = (1, 2,−3,−3), eR = (1, 1, 6, 3), νR = (1, 1, 0, 3)

under SU(3)C × SU(2)L × U(1)Y × U(1)B−L. Also, 1 pair of Higgs

H = (1, 2, 3, 0), H̄ = (1, 2̄,−3, 0)



That is, we get exactly the matter spectrum of the MSSM

In addition, there are

bundle modulin1 = h1(X, V × V ∗)Z3×Z3 = 13 vector φ = (1, 1, 0, 0)

with 3 right-handed neutrinos!

Note:  In pre-string Spin(10) GUTtheories the gauged U(1)B−L

is spontaneously broken by adding multiplets, such as126, which

3(B − L) = ±2,±4, . . . ⇒ U(1)B−L −→ Z2 (R− parity)

Not possible in Spin(10) heterotic strings since 

contain SU(3)C × SU(2)L × U(1)Y singlets for which

45,16, 1̄6,10,1

are the only multiplets in the 248 of E8 .  The only singlets are νR

3(B − L) = 1 ⇒ U(1)B−L −→ 1

⇒ In SU(4) heterotic vacua must break B-L symmetry via

〈ν3〉 #= 0 at low scale



N=1 Supersymmetry Primer

Chiral Superfield:

Vector Superfield:

Φ ∼ (φ, ψ, F )
V ∼ (Aµ, λ, D)

quarks/leptons/Higgs

gauge fields

F and D are “auxiliary fields” which ⇒ potential energy is

V = |F |2 +
1
2
D2

where
F =

∂W

∂φ
, W holomorphic ”superpotential”

D = gφ†Tφ

Supersymmetric Interactions:

The most general superpotential is

W =
3∑

i=1

(λu,iQiHui + λd,iQiH̄di + λν,iLiHνi + λe,iLiH̄ei)

Note B-L symmetry forbids dangerous B and L violating terms

LLe, LQd, udd

+µHH̄



Supersymmetry Breaking, the Renormalization Group 
and the LHC

Soft Supersymmetry Breaking:

N=1 Supersymmetry is spontaneously broken by the moduli 
during compactification ⇒ soft supersymmetry breaking 

interactions. The relevant ones are

V2f =
1
2
M3λ3λ3 + . . .

V2s = m2
ν3

|ν3|2 + m2
H |H|2 + m2

H̄ |H̄|2 − (BHH̄ + hc) + . . .

At the compactification scale MC ! 1016GeV these parameters 
are fixed by the vacuum values of the moduli. For example

m2
ν3

= m2
ν3

(〈φ〉)

Ambroso, Ovrut 2009

Can one compute 〈φ〉 ?



As of yet no complete theory of moduli stabilization. However

∗ New theory to stabilize all geometric moduli Anderson, Gray, 
Lukas, Ovrut

2010

At a lower scale µ measured by t = ln(
µ

MC
) parameters

change under the renormalization group. For example

-35 -30 -25 -20 -15 -10 -5 0
t

0.4

0.6

0.8

1

1.2

gi

Figure 1: This plot shows the running of the gauge couplings g1(red), g2(yellow), g3(green) and

g4(blue) and their subsequent unification at 2× 1016 GeV. For this plot, t = Ln(µ/(2.2× 1016)).

where we have taken t = Ln(µ/Mg) and Mg is the GUT scale. Using
the above values, we get unification at roughly 2.19 × 1016 at a value of
gunification = 0.7235. Note that we did not take into account threshold cor-
rections of any kind. Using these, which depend on the gauge group and
matter content, a wider range of values can be obtained.

We now expand the MSSM to include a U(1)B−L and thus a new coupling

constant gB−L =
√

3
4g4. Though we can calculate the RGE equation for this

coupling, we do not have any derived value of the coupling at any scale, thus
it is a free parameter. If we set g4 to unify with the others at MG then we
find at MZ then we get the value g4 = 0.3795.

1.2 Yukawa Couplings

We begin by recalling the value of the Standard Model Yukawa couplings at
the scale MZ . These can be obtained simply from knowing the masses of
each of the fermions in the SM as well as the value of the Higg’s vev. In the
SM, the Higgs, denoted as H, can obtain a VEV 〈H〉. In general we find the
mass of a fermion is

mi =
1√
2
λi〈H〉 . (5)

Using this equation and letting 〈H〉 = 246GeV, we find the list of Yukawa
values displayed in figure 3.

For the MSSM, there are two different Higgs doublets that give mass to

2
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matter content, a wider range of values can be obtained.

We now expand the MSSM to include a U(1)B−L and thus a new coupling
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√
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4g4. Though we can calculate the RGE equation for this

coupling, we do not have any derived value of the coupling at any scale, thus
it is a free parameter. If we set g4 to unify with the others at MG then we
find at MZ then we get the value g4 = 0.3795.

1.2 Yukawa Couplings

We begin by recalling the value of the Standard Model Yukawa couplings at
the scale MZ . These can be obtained simply from knowing the masses of
each of the fermions in the SM as well as the value of the Higg’s vev. In the
SM, the Higgs, denoted as H, can obtain a VEV 〈H〉. In general we find the
mass of a fermion is
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2
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Using this equation and letting 〈H〉 = 246GeV, we find the list of Yukawa
values displayed in figure 3.

For the MSSM, there are two different Higgs doublets that give mass to
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← µC " 1016 GeV← µB−L " 104 GeV

µEW ! 102 GeV →



The renormalization group equation for  

Solving the RGEs assuming

mν3(tB−L)2 = mν(0)2
⇒

16π2 dm2
ν3

dt
! 3

4
g4

2
3∑

i=1

(m2
νi

+ . . . )

at scale 

mH(0)2 = mH̄(0)2, mQi(0)2 = muj (0)2 = mdk(0)2

mLi(0)2 = mej (0)2 != mνk(0)2

−5mν(0)2 =−4mν(0)2

mν3 is

µ ! 104 GeV ⇒ tB−L ! −28.7

ν3

V

〈ν3〉 =
2mν(0)√

3
4g4

−4mν(0)2

The gauged U(1)B−L is spontaneously broken by the third family
right-handed sneutrino.  

⇒



⇒ a B-L vector boson mass of 
MAB−L = 2

√
2mν(0)

Similarly, at the electroweak scale 

mH̄′ (tEW )2 ! mH(0)2,

where tanβ =
〈H〉
〈H̄〉 and 

symmetry is broken by the expectation valuetEW electroweak
. ⇒ at is related to M3(0)

mH′ (tEW )2 ! − ∆2

tanβ2 mH(0)2

0 < ∆2 < 1

〈H
′0〉 =

2∆ mH(0)

tanβ
√

3
5g2

1 + g2
2

⇒ a Z-boson mass of MZ =
√

2∆ mH(0)
tanβ

" 91GeV

µ ! 102 GeV ⇒ tEW ! −33.2
At this scale, no other symmetry is broken.

ν3

V

〈H ′0〉

〈ν3〉



It follows that there is a B-L/EW gauge hierarchy. For a “natural” range of 
parameters we find

which is phenomenologically acceptable.

O(10) ! MAB−L

MZ
! O(100)

Initial Parameter Space:

With “universality” assumptions such as
mH(0)2 = mH̄(0)2, mQi(0)2 = muj (0)2 = mdk(0)2

and restricting to the third family ⇒ 9 initial parameters.
Fix 5 in middle of B-L radiative breaking regime ⇒ 4 parameters 

cq(0) , cν3(0) cµ(0) , tanβ

choose scan

,

Lower Bounds on Masses:

Derived from data under various scenarios. Example



114.4

∼ 133

∼ 133

∼ 5

hep-ex/0602042

Search for Neutral MSSM 
Higgs Bosons at LEP

ALEPH, DELPHI, L3 and 
OPAL Collaborations
The LEP Working Group 
for Higgs Boson Searches

the stop mixing 
parameter is set to a 
large value



All superpartner masses are related through intertwined renormalization
group equations. ⇒ Inputting some initial parameters allows one to

For a representative choice of initial parameters

µ, tanβ

predict all sparticle and Higgs masses!
cq(0) , cν3(0) the 

plane can be scanned for the regime consistent with data.

Particle Symbol Mass [GeV] Particle Symbol Mass [GeV]

Squarks

Q̃1,2 1080

Higgs

h0 103
t̃1,2, b̃1,2 1012, 1140 H0 473

b̃(1)
3 , b̃(2)

3 884, 1055 A0
1 472

t̃(1)3 , t̃(2)
3 699, 903 H± 479

Sleptons
L̃1,2 1216

Neutralinos

Ñ0
1 100

τ̃1,2 1185 Ñ0
2 146

τ̃ (1)
3 , τ̃ (2)

3 1141, 1197 Ñ0
3 286

Charginos χ̃±, χ̃′± 286, 537 Ñ0
4 522

Gluinos g̃ 1074 Z ′ AB−L, ÃB−L 1252, 536

Table 2: The predicted spectrum at point (P) in Figure 1(e). The tilde denotes the superpartner of the

respective particle. The superpartners of left-handed fields are depicted by an upper case label whereas

the lower case is used for right-handed fields. The considerable mixing between the third family left- and

right-handed scalar fields is incorporated into these results.

Figure 2: A plot of the cq(0)-cν3 (0) plane showing physically relevant areas. The yellow and white

indicate points whose corresponding cµ(0)-tan β plane does and does not contain a region of electroweak

symmetry breaking respectively. Within the yellow area, the blue shading contains all points whose cµ(0)-

tan β plane has a non-vanishing region satisfying all experimental sparticle and Higgs bounds and for

which all soft susy breaking masses remain positive over the entire scaling range. (A) and (B) indicate

the two points analyzed in detail in the text.
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all points break B− L→

← no EW breaking

← EW breaking← satisfy all mass bounds



point (A)



The predicted sparticle and Higgs masses at point (P) are
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Figure 4: Plot (a) shows the cµ(0)-tan β plane corresponding to point (A) in Figure 2 with the

phenomenologically allowed region indicated in dark brown. The mass spectrum at (P) was presented in

Table 2. A plot of the hierarchy MB−L/MZ over the allowed region is given in (b). Graph (c) shows the

hierarchy as a function of cµ(0) along the tan β = 18 line passing through (P).
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28• hierarchy at (P)MAB−L/MZ = 1252/91 = 13.76



(a)

(b)
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Figure 5: Plot (a) shows the cµ(0)-tan β plane corresponding to point (B) in Figure 2 with the

phenomenologically allowed region indicated in dark brown. The mass spectrum at (Q) was presented in

Table 3. A plot of the hierarchy MB−L/MZ over the allowed region is given in (b). Graph (c) shows the

hierarchy as a function of cµ(0) along the tan β = 12 line passing through (Q).
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Figure 5: Plot (a) shows the cµ(0)-tan β plane corresponding to point (B) in Figure 2 with the

phenomenologically allowed region indicated in dark brown. The mass spectrum at (Q) was presented in

Table 3. A plot of the hierarchy MB−L/MZ over the allowed region is given in (b). Graph (c) shows the

hierarchy as a function of cµ(0) along the tan β = 12 line passing through (Q).
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Some 〈ν3〉 #= 0 Phenomenology:

Expanding

is phenomenologically viable. In this section, we explore two more impor-
tant constraints arising from lepton number and baryon number violation
respectively.

5.1 Lepton Number Violation

The most general superpotential invariant under gauge group SU(3)C ×
SU(2)L × U(1)Y × U(1)B−L is presented in (6). Assuming a flavor diago-
nal basis, the superpotential becomes

W = µHH̄ +
3∑

i=1

(
λu,iQiHui + λd,iQiH̄d + λν,iLiHνi + λe,iLiH̄ei

)
. (123)

Recall that since U(1)B−L contains matter parity, the dangerous lepton and
baryon number violating terms in (7) are forbidden. Note, however, that
these results are only valid at high scales where the gauge symmetry, in
particular U(1)B−L, is exact. At low energy-momentum the gauged B-L
symmetry is spontaneously broken, potentially allowing these operators to
“grow back”. This can be analyzed by expanding the third family right-
handed sneutrino around its VEV, that is, let ν3 = 〈ν3〉+ ν ′3. Note that

µHH̄ + λν3L3Hν3 = µH(H̄ + ε3L3) + . . . , (124)

where

ε3 = λν3

〈ν3〉
µ

. (125)

This motivates performing a rotation of the down Higgs and third family
lepton doublet superfields given, to leading order, by

H̄ ′ = H̄ + ε3L3 , L′
3 = L3 − ε3H̄ . (126)

Written in terms of these new superfields, and then dropping the ′ for sim-
plicity, the superpotential becomes

W = W + ε3

3∑

i=1

λe,iL3Liei + ε3

3∑

i=1

λd,iL3Qidi , (127)

where W is given in (123). As expected, the lepton number violating terms
of the form

L3Liei , L3Qidi (128)

50

and diagonalizing the kinetic energy ⇒
the superpotential becomes

+ε3

3∑

i=1

λe,iL3Liei + ε3

3∑

i=1

λd,iL3QidiW = W +0 uidjdk

lepton number violating baryon number violating

where ε3 = λν3

〈ν3〉
µ

.The baryon number violating operators can only 

arise from B-L invariant higher-dimension terms 

(A) Proton Decay

γijk = −γikj
1

MC
γijk ν3uidjdk ,

When 〈ν3〉 #= 0 these induce

λ′′
ijkuidjdk , λ′′

ijk = γijk
〈ν3〉
MC

Ambroso, Ovrut 2009/2010
Barger,  Perez, Spinner



Nucleon decay is generated from

For the B-L MSSM with 〈ν3〉 #= 0

For proton decay, the relevant baryon violating operators are

λ′′
11ku1d1dk , k = 2, 3

the relevant lepton violating terms are 

ε3λd,kL3Qkdk , k = 2, 3

Since the masses of     and     exceed the proton mass, the only possible    

decay channel is

τ+ B+

p −→ K+ + ν̄3

1

1

2, 3

3

2, 3

ε

( )

)(

ν3

s, b

τ

c, t



The product of couplings inducing this decay is

λ′λ′′ = ε3λd,2γ112
〈ν3〉
MC

This decay will be suppressed below observed bound if

λ′λ′′ < O(10−25)

For example, evaluating parameters at the point (P) discussed above 

and taking γ112 ∼ O(1) gives

λ′λ′′ < 6.89× 10−16λν3 ⇒ λν3 ! 10−10

• Sufficiently suppresses proton decay

Consistent with  baryogenesis and gravitino dark matter•

Also



(B) Neutrino Masses
To compute the neutrino masses,  must consider the full neutralino
mass matrix. In the basis this is

Note that terms proportional to the left-handed sneutrino VEV have
been dropped since 〈N3〉 # λν3〈ν3〉

MSSM

. In the limit λν3 → 0 ,
zero mass and 

has 

M4 → 0 supersymmetric limit

have diagonal masses

Note, in the

ψν3 ,λB−L

mixing −→

mψ′
ν3

= mλ′B−L
= MAB−L



That is,  the right-handed neutrino gets a Majorana mass

mψ′
ν3
! O(MAB−L)

Now turning on λν3 != 0 ⇒ left-handed neutrino mass

Evaluating at point (P) above and taking λν3 ! 10−10 to satisfy proton 

decay bound ⇒
mψ′

N3
! 7.2× 10−7 eV

This predicts an “inverted” neutrino hierarchy 

ν1
ν2

ν3
m = 0

∼ 5× 10−2 eV

∼ 1× 10−2 eV



Some 〈ν3〉 #= 0 Cosmology:
Ambroso, Ovrut 2009/2010

Baryon Asymmetry and Dark Matter

Primordial baryon asymmetry not erased before EW transition
requires small lepton number violating terms ⇒

( ε3
10−6

) (
tanβ

10

)
! 1

where ε3 = λν3

〈ν3〉
µ

. Evaluated, for example, at (P) with
λν3 ! 10−10

gives ( ε3
10−6

) (
tanβ

10

)
! 0.933× 10−3 ! 1

Assuming  the gravitino is the LSP and the neutralino the NLSP⇒
Note that a neutralino is the lightest sparticle in the B-L MSSM.



gravitino lifetime:

neutralino lifetime:

Taking m3/2 ! 102 GeV , the lifetimes evaluated at (P) are

,

The estimated lifetime of the universe is 

It follows that in the B-L MSSM

τ3/2 >> τuniverse ⇒ gravitino dark matter

τuniverse ∼ 13.7 billion years " 4.32× 1017s

τNLSP << τuniverse

and


